Asymptotic quantum algorithm for the Toeplitz systems

Solving the Toeplitz systems, which is to find the vector $x$ such that $T_nx = b$ given an $n\times n$ Toeplitz matrix $T_n$ and a vector $b$, has a variety of applications in mathematics and engineering. In this paper, we present a quantum algorithm for solving the linear equations of Toeplitz matrices, in which the Toeplitz matrices are generated by discretizing a continuous function. It is shown that our algorithm's complexity is nearly $O(\kappa\textrm{log}^2 n)$, where $\kappa$ and $n$ are the condition number and the dimension of $T_n$ respectively. This implies our algorithm is exponentially faster than the best classical algorithm for the same problem if $\kappa=O(\textrm{poly}(\textrm{log}\,n))$. Since no assumption on the sparseness of $T_n$ is demanded in our algorithm, it can serve as an example of quantum algorithms for solving non-sparse linear systems.

[1]  Harold Widom,et al.  Review: I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution , 1975 .

[2]  Michael Gastpar,et al.  Gaussian Multiple Access via Compute-and-Forward , 2014, IEEE Transactions on Information Theory.

[3]  Lek-Heng Lim,et al.  Every Matrix is a Product of Toeplitz Matrices , 2013, Found. Comput. Math..

[4]  A. Chan,et al.  Application of approximation theory methods to recursive digital filter design , 1982 .

[5]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[6]  Maria Schuld,et al.  Pattern classification with linear regression on a quantum computer , 2016 .

[7]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[8]  Toshikane Oda Moment analysis for traffic associated with Markovian queueing systems , 1991, IEEE Trans. Commun..

[9]  J. B. Wang,et al.  Efficient quantum circuits for dense and non-unitary operators , 2016, 1607.07149.

[10]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[11]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[12]  Clyde Martin,et al.  Analytic and numerical aspects of the observation of the heat equation , 1987, 26th IEEE Conference on Decision and Control.

[13]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[14]  W. Rogosinski Fourier series , 1950 .

[15]  Bin Liu,et al.  A Generic Construction of Quantum-Oblivious-Key-Transfer-Based Private Query with Ideal Database Security and Zero Failure , 2017, IEEE Transactions on Computers.

[16]  Gabriele Steidl,et al.  Preconditioners for Ill-Conditioned Toeplitz Matrices , 1999 .

[17]  Efficient state preparation for a register of quantum bits (13 pages) , 2004, quant-ph/0408045.

[18]  John S. Baras,et al.  On the convergence of the inverses of Toeplitz matrices and its applications , 2003, IEEE Trans. Inf. Theory.

[19]  L. Wossnig,et al.  Quantum Linear System Algorithm for Dense Matrices. , 2017, Physical review letters.

[20]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[21]  J. Traub,et al.  Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.

[22]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[23]  Raymond H. Chan,et al.  Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..

[24]  Chao-Hua Yu,et al.  Quantum algorithm for association rules mining , 2015, 1512.02420.

[25]  Jingbo B. Wang,et al.  Quantum Fourier transform in computational basis , 2015, Quantum Information Processing.

[26]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[27]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[28]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[29]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[30]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[31]  J. Joseph,et al.  Fourier Series , 2018, Series and Products in the Development of Mathematics.

[32]  P. J. Sherman Circulant approximations of the inverses of Toeplitz matrices and related quantities with applications to stationary random processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[33]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.

[34]  Stuart Hadfield,et al.  Quantum algorithms and circuits for scientific computing , 2015, Quantum Inf. Comput..

[35]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[36]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[37]  Ashley Montanaro,et al.  Quantum algorithms and the finite element method , 2015, 1512.05903.

[38]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[39]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[40]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[41]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[42]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[43]  J. B. Wang,et al.  Efficient quantum circuits for Toeplitz and Hankel matrices , 2016, 1605.07710.

[44]  October I Physical Review Letters , 2022 .

[45]  R. W. Revans,et al.  Decision and Control , 1968 .

[46]  J. B. Wang,et al.  Efficient quantum circuits for dense circulant and circulant like operators , 2016, Royal Society Open Science.