On the Cutting Edge of Relativization: The Resource Bounded Injury Method

In this paper we construct an oracle A such that NEXP A ⊑P e A . For the construction of this oracle we present a new variation on the finite injury priority method that we call the resource bounded injury method. As a corollary we obtain an oracle A such that Sewelsons conjecture fails, i.e. EXP A =NEXP A ≠EXP NP A , via a direct construction that does not make use of information theoretical lower bounds.

[1]  R. Soare Recursively enumerable sets and degrees , 1987 .

[2]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[3]  Vivian Sewelson A Study of the Structure of NP , 1993 .

[4]  Lane A. Hemachandra,et al.  The strong exponential hierarchy collapses , 1989 .

[5]  Samuel R. Buss,et al.  On Truth-Table Reducibility to SAT , 1991, Inf. Comput..

[6]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[7]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[8]  Stuart A. Kurtz,et al.  The Isomorphism Conjecture Holds Relative to an Oracle , 1996, SIAM J. Comput..

[9]  Stanislav Zák A Turing machine space hierarchy , 1979, Kybernetika.

[10]  Tao Jiang,et al.  Some Classes of Languages in NC¹ , 1991, Inf. Comput..

[11]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[12]  Russell Impagliazzo,et al.  Decision versus search problems in super-polynomial time , 1989, 30th Annual Symposium on Foundations of Computer Science.

[13]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.

[14]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[15]  Michael I. Dekhtyar,et al.  On the Relativization of Deterministic and Nondeterministic Complexity Classes , 1976, MFCS.

[16]  Stuart A. Kurtz On the Random Oracle Hypothesis , 1983, Inf. Control..

[17]  Ronald V. Book,et al.  Bounded Query Machines: On NP and PSPACE , 1981, Theor. Comput. Sci..

[18]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[19]  R. Friedberg,et al.  TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Sarah Mocas,et al.  Nonuniform Lower Bounds for Exponential Time Classes , 1995, MFCS.

[21]  Sarah Mocas Separating exponential time classes from polynomial time classes , 1993 .

[22]  Sarah Mocas,et al.  Using bounded query classes to separate classes in the exponential time hierarchy from classes in PH , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[23]  Hans Heller,et al.  On Relativized Exponential and Probabilistic Complexity Classes , 1986, Inf. Control..

[24]  Ker-I Ko Distinguishing Conjunctive and Disjunctive Reducibilities by Sparse Sets , 1989, Inf. Comput..

[25]  Bin Fu,et al.  Some properties of exponential time complexity classes , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[26]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[27]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[28]  Hans Heller On Relativized Polynomial and Exponential Computations , 1984, SIAM J. Comput..

[29]  Lane A. Hemaspaandra,et al.  The Strong Exponential Hierarchy Collapses , 1987, J. Comput. Syst. Sci..

[30]  Peter van Emde Boas,et al.  Diagonalisation methods in a polynomial setting , 1986, Computational Complexity Conference.