On the Cutting Edge of Relativization: The Resource Bounded Injury Method
暂无分享,去创建一个
[1] R. Soare. Recursively enumerable sets and degrees , 1987 .
[2] John Gill,et al. Relativizations of the P =? NP Question , 1975, SIAM J. Comput..
[3] Vivian Sewelson. A Study of the Structure of NP , 1993 .
[4] Lane A. Hemachandra,et al. The strong exponential hierarchy collapses , 1989 .
[5] Samuel R. Buss,et al. On Truth-Table Reducibility to SAT , 1991, Inf. Comput..
[6] Michael J. Fischer,et al. Separating Nondeterministic Time Complexity Classes , 1978, JACM.
[7] Adi Shamir,et al. IP = PSPACE , 1992, JACM.
[8] Stuart A. Kurtz,et al. The Isomorphism Conjecture Holds Relative to an Oracle , 1996, SIAM J. Comput..
[9] Stanislav Zák. A Turing machine space hierarchy , 1979, Kybernetika.
[10] Tao Jiang,et al. Some Classes of Languages in NC¹ , 1991, Inf. Comput..
[11] John Gill,et al. Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..
[12] Russell Impagliazzo,et al. Decision versus search problems in super-polynomial time , 1989, 30th Annual Symposium on Foundations of Computer Science.
[13] Neil Immerman,et al. Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.
[14] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[15] Michael I. Dekhtyar,et al. On the Relativization of Deterministic and Nondeterministic Complexity Classes , 1976, MFCS.
[16] Stuart A. Kurtz. On the Random Oracle Hypothesis , 1983, Inf. Control..
[17] Ronald V. Book,et al. Bounded Query Machines: On NP and PSPACE , 1981, Theor. Comput. Sci..
[18] Stanislav Zák,et al. A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..
[19] R. Friedberg,et al. TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[20] Sarah Mocas,et al. Nonuniform Lower Bounds for Exponential Time Classes , 1995, MFCS.
[21] Sarah Mocas. Separating exponential time classes from polynomial time classes , 1993 .
[22] Sarah Mocas,et al. Using bounded query classes to separate classes in the exponential time hierarchy from classes in PH , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.
[23] Hans Heller,et al. On Relativized Exponential and Probabilistic Complexity Classes , 1986, Inf. Control..
[24] Ker-I Ko. Distinguishing Conjunctive and Disjunctive Reducibilities by Sparse Sets , 1989, Inf. Comput..
[25] Bin Fu,et al. Some properties of exponential time complexity classes , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.
[26] José L. Balcázar,et al. Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.
[27] J. Hartmanis,et al. On the Computational Complexity of Algorithms , 1965 .
[28] Hans Heller. On Relativized Polynomial and Exponential Computations , 1984, SIAM J. Comput..
[29] Lane A. Hemaspaandra,et al. The Strong Exponential Hierarchy Collapses , 1987, J. Comput. Syst. Sci..
[30] Peter van Emde Boas,et al. Diagonalisation methods in a polynomial setting , 1986, Computational Complexity Conference.