Advances in plant nutrition diagnosis based on remote sensing and computer application

Hyperspectral remote sensing, visible light remote sensing and canopy color analysis have been widely concerned for rapid diagnosis of crop growth and nutrition. They are expected to develop into potential nondestructive diagnostic techniques for crop nitrogen nutrition in the new era on account of the advantages of stable, rapid, convenient and nondestructive results, together with the good correlation between canopy color parameter NRI and plant nitrogen nutrition index and yield satisfying the demand for nondestructive diagnosis of nitrogen nutrition, and their feasibility to monitor plant growth status and nitrogen nutrition level in real time and quickly. At present, with the rapid development of remote sensing satellite, unmanned aerial vehicles remote sensing and Internet of things, remote sensing will be more and more widely used in plant nutrition diagnosis.

[1]  A. Gitelson,et al.  Application of Spectral Remote Sensing for Agronomic Decisions , 2008 .

[2]  Ping Wang,et al.  Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data , 2017 .

[3]  Cao Weixing,et al.  Effects of Nitrogen Fertilizer Top-Dressing Based on Canopy Reflectance Spectra in Rice , 2010 .

[4]  Tsuyoshi Akiyama,et al.  A Spectroradiometer for Field Use : VI. Radiometric estimation for chlorophyll index of rice canopy , 1986 .

[5]  Pierre Roumet,et al.  Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer , 2013 .

[6]  Li Lan-ta,et al.  Diagnosis of N nutrition of rice using digital image processing technique , 2015 .

[7]  J. Dungan,et al.  Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies , 2001 .

[8]  M. Schaepman,et al.  Review of optical-based remote sensing for plant trait mapping , 2013 .

[9]  Feng Zhang,et al.  Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle , 2015 .

[10]  Heikki Saari,et al.  Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications , 2011, Remote Sensing.

[11]  Matthew O. Anderson,et al.  Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle , 2012, Remote. Sens..

[12]  G. Fitzgerald,et al.  Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a Canopy Chlorophyll Content Index , 2012 .

[13]  Philip Lewis,et al.  Hyperspectral remote sensing of foliar nitrogen content , 2012, Proceedings of the National Academy of Sciences.

[14]  R. D. Ramsey,et al.  Canopy Reflectance Estimation of Wheat Nitrogen Content for Grain Protein Management , 2004 .

[15]  Li-wen Wang,et al.  [Progress in inversion of vegetation nitrogen concentration by hyperspectral remote sensing]. , 2013, Guang pu xue yu guang pu fen xi = Guang pu.

[16]  G. Fitzgerald,et al.  Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI) , 2010 .

[17]  H. Gausman,et al.  Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentrations for Eight Crops1 , 1977 .

[18]  Lin Wei,et al.  Estimating the chlorophyll content of Kandelia candel based on hyper鄄spectral remote sensing in the Min River Estuarine wetland , 2014 .

[19]  J. Fallahzade,et al.  Responses of cucumber (Cucumissativus L.) to ozonated water under varying drought stress intensities , 2018 .

[20]  Arko Lucieer,et al.  HyperUAS—Imaging Spectroscopy from a Multirotor Unmanned Aircraft System , 2014, J. Field Robotics.

[21]  J. L. Gabriel,et al.  Airborne and ground level sensors for monitoring nitrogen status in a maize crop , 2017 .

[22]  Moon S. Kim,et al.  Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .

[23]  Kuo-Wei Chang,et al.  A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy , 2008 .

[24]  D. Haboudane,et al.  New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat , 2010 .

[25]  Ming Zhao,et al.  [Establishment of The Crop Growth and Nitrogen Nutrition State Model Using Spectral Parameters Canopy Cover]. , 2016, Guang pu xue yu guang pu fen xi = Guang pu.

[26]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[27]  E. Simón,et al.  Radiometric characteristics of Triticum aestivum cv, Astral under water and nitrogen stress , 1994 .

[28]  C. Goad,et al.  Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves , 2018 .

[29]  Francisca López-Granados,et al.  Assessing Nitrogen and Potassium Deficiencies in Olive Orchards through Discriminant Analysis of Hyperspectral Data , 2007 .

[30]  Hai-Zhen Tan Monitoring Canopy Chlorophyll Density in Seedlings of Winter Wheat Using Imaging Spectrometer: Monitoring Canopy Chlorophyll Density in Seedlings of Winter Wheat Using Imaging Spectrometer , 2009 .

[31]  Bani K. Mallick,et al.  Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection , 2013 .

[32]  Fei Li,et al.  Optimising three-band spectral indices to assess aerial N concentration, N uptake and aboveground biomass of winter wheat remotely in China and Germany , 2014 .

[33]  Craig S. T. Daughtry,et al.  A visible band index for remote sensing leaf chlorophyll content at the canopy scale , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[34]  G. F. Sassenrath-Cole,et al.  Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration , 2000 .

[35]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[36]  M. S. Borhan,et al.  MULTISPECTRAL AND COLOR IMAGING TECHNIQUES FOR NITRATE AND CHLOROPHYLL DETERMINATION OF POTATO LEAVES IN A CONTROLLED ENVIRONMENT , 2004 .

[37]  Niu Zheng,et al.  Mechanism Analysis of Leaf Biochemical Concentration by High Spectral Remote Sensing , 2000 .

[38]  Jinzhong Min,et al.  Estimating Wheat Shoot Nitrogen Content at Vegetative Stage from In Situ Hyperspectral Measurements , 2013 .

[39]  Bing Zhang,et al.  A novel two-step method for winter wheat-leaf chlorophyll content estimation using a hyperspectral vegetation index , 2014 .

[40]  James S. Schepers,et al.  Detection of Phosphorus and Nitrogen Deficiencies in Corn Using Spectral Radiance Measurements , 2002 .

[41]  Chunjiang Zhao,et al.  Non-uniform vertical nitrogen distribution within plant canopy and its estimation by remote sensing: A review , 2013 .

[42]  Huang Wenjiang,et al.  In-situ crop hyperspectral acquiring and spectral features analysis based on pushbroom imaging spectrometer. , 2010 .

[43]  Fei Li,et al.  Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression , 2014 .

[44]  Liu ZhanYu,et al.  Predicting Nitrogen Concentrations from Hyperspectral Reflectance at Leaf and Canopy for Rape , 2008 .

[45]  Yuan Wang,et al.  [Predicting nitrogen concentrations from hyperspectral reflectance at hyperspectral reflectance at leaf and canopy for rape]. , 2008, Guang pu xue yu guang pu fen xi = Guang pu.

[46]  F. Maupas,et al.  Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping , 2017 .