Integral formulation of the macroscopic quantum electrodynamics in dispersive dielectric objects

We propose an integral formulation of macroscopic quantum electrodynamics in the Heisenberg picture for linear dispersive dielectric objects of finite size, utilizing the Hopfield-type approach. By expressing the electromagnetic field operators as a function of the polarization density field operator via the retarded Green function for the vacuum, we obtain an integral equation that governs the evolution of the polarization density field operator. This formulation offers significant advantages, as it allows for the direct application of well-established computational techniques from classical electrodynamics to perform quantum electrodynamics computations in open, dispersive, and absorbing environments.

[1]  B. Hecht,et al.  Detection of a plasmon-polariton quantum wave packet , 2023, Nature Physics.

[2]  G. Miano,et al.  Operative approach to quantum electrodynamics in dispersive dielectric objects based on a polarization-mode expansion , 2021, Physical Review A.

[3]  G. Miano,et al.  Time-domain formulation of electromagnetic scattering based on a polarization-mode expansion and the principle of least action , 2021, Physical Review A.

[4]  W. Chew,et al.  Diagonalization of the Hamiltonian for finite-sized dispersive media: Canonical quantization with numerical mode decomposition , 2021, 2101.12184.

[5]  H. Jauslin,et al.  Critical review of quantum plasmonic models for finite-size media , 2019, Nanophotonics.

[6]  A. Knorr,et al.  Quantization of Quasinormal Modes for Open Cavities and Plasmonic Cavity Quantum Electrodynamics. , 2018, Physical review letters.

[7]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[8]  A. Drezet Equivalence between the Hamiltonian and Langevin noise descriptions of plasmon polaritons in a dispersive and lossy inhomogeneous medium , 2017, 1707.01409.

[9]  S. Maier,et al.  Quantum plasmonics , 2013, Nature Physics.

[10]  T. Philbin Canonical quantization of macroscopic electromagnetism , 2010, 1009.5005.

[11]  Lev S. Bishop,et al.  CIRCUIT QUANTUM ELECTRODYNAMICS , 2010, Mesoscopic Physics meets Quantum Engineering.

[12]  S. Scheel,et al.  MACROSCOPIC QUANTUM ELECTRODYNAMICS — CONCEPTS AND APPLICATIONS , 2008, 0902.3586.

[13]  J. Sipe,et al.  Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media , 2006 .

[14]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .

[15]  M. Wubs,et al.  Field quantization in inhomogeneous absorptive dielectrics , 2004, quant-ph/0407045.

[16]  H. Arnoldus Transverse and longitudinal components of the optical self-, near-, middle- and far-field , 2003 .

[17]  L. Okun,et al.  Historical roots of gauge invariance , 2000, hep-ph/0012061.

[18]  H. T. Dung,et al.  Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics , 1997, quant-ph/9711039.

[19]  C. cohen-tannoudji,et al.  Photons and Atoms , 1997 .

[20]  Barnett,et al.  Electromagnetic field quantization in absorbing dielectrics. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  Welsch,et al.  Correlation of radiation-field ground-state fluctuations in a dispersive and lossy dielectric. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Barnett,et al.  Quantization of the electromagnetic field in dielectrics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[23]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[24]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[25]  F. J. Belinfante On the longitudinal and the transversal delta-function, with some applications , 1946 .

[26]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[27]  R. Glauber,et al.  Quantum optics of dielectric media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[28]  A. Einstein On the Quantum Theory of Radiation , 1983 .