Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter

[1]  K. Sauer c-di-GMP Signaling , 2017, Methods in Molecular Biology.

[2]  F. Cutruzzolà,et al.  Novel genetic tools to tackle c‐di‐GMP‐dependent signalling in Pseudomonas aeruginosa , 2016, Journal of applied microbiology.

[3]  A. Mazur,et al.  Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli , 2015, Journal of bacteriology.

[4]  Michael Y. Galperin,et al.  Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms , 2015, Journal of bacteriology.

[5]  Xun Wang,et al.  Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis , 2015, Front. Microbiol..

[6]  Fei Liu,et al.  A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch. , 2015, Analytica chimica acta.

[7]  A. Herr,et al.  A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer , 2015, RNA biology.

[8]  Xinfeng Li,et al.  Functional Analysis of a c-di-AMP-specific Phosphodiesterase MsPDE from Mycobacterium smegmatis , 2015, International journal of biological sciences.

[9]  Ronny Lorenz,et al.  Design criteria for synthetic riboswitches acting on transcription , 2015, RNA biology.

[10]  S. Strobel,et al.  Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy , 2014, RNA.

[11]  C. Dann,et al.  Engineering of Bacillus subtilis Strains To Allow Rapid Characterization of Heterologous Diguanylate Cyclases and Phosphodiesterases , 2014, Applied and Environmental Microbiology.

[12]  G. O’Toole,et al.  Deletion Mutant Library for Investigation of Functional Outputs of Cyclic Diguanylate Metabolism in Pseudomonas aeruginosa PA14 , 2014, Applied and Environmental Microbiology.

[13]  Jie Zhou,et al.  E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs. , 2014, Molecular bioSystems.

[14]  Ziniu Yu,et al.  High-Throughput Identification of Promoters and Screening of Highly Active Promoter-5′-UTR DNA Region with Different Characteristics from Bacillus thuringiensis , 2013, PloS one.

[15]  M. Uyttendaele,et al.  Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. , 2013, FEMS microbiology ecology.

[16]  C. A. Kellenberger,et al.  RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. , 2013, Journal of the American Chemical Society.

[17]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[18]  Ziniu Yu,et al.  The Metabolic Regulation of Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis Revealed by Transcriptomics and Proteomics* , 2013, Molecular & Cellular Proteomics.

[19]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[20]  H. Mobley,et al.  Enzymatically Active and Inactive Phosphodiesterases and Diguanylate Cyclases Are Involved in Regulation of Motility or Sessility in Escherichia coli CFT073 , 2012, mBio.

[21]  Jie Zhou,et al.  Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. , 2012, Chemical communications.

[22]  H. Sondermann,et al.  Sensing the messenger: The diverse ways that bacteria signal through c‐di‐GMP , 2012, Protein science : a publication of the Protein Society.

[23]  D. Chatterji,et al.  A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. , 2012, Microbiology.

[24]  Ronald R. Breaker,et al.  Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5'-monophosphate. , 2012, Analytical chemistry.

[25]  T. Tolker-Nielsen,et al.  Fluorescence-Based Reporter for Gauging Cyclic Di-GMP Levels in Pseudomonas aeruginosa , 2012, Applied and Environmental Microbiology.

[26]  C. Waters,et al.  Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile , 2012, Journal of bacteriology.

[27]  H. Sondermann,et al.  You've come a long way: c-di-GMP signaling. , 2012, Current opinion in microbiology.

[28]  R. Breaker Riboswitches and the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[29]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[30]  Roger A. Jones,et al.  Differential analogue binding by two classes of c-di-GMP riboswitches. , 2011, Journal of the American Chemical Society.

[31]  Samuel I. Miller,et al.  The bacterial second messenger c‐di‐GMP: mechanisms of signalling , 2011, Cellular microbiology.

[32]  Peter D. Newell,et al.  Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by Pseudomonas fluorescens Pf0-1 , 2011, Journal of bacteriology.

[33]  Ziniu Yu,et al.  Complete Genome Sequence of Bacillus thuringiensis subsp. chinensis Strain CT-43 , 2011, Journal of bacteriology.

[34]  Kathryn D. Smith,et al.  Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches , 2011, Proceedings of the National Academy of Sciences.

[35]  M. Buttner,et al.  Identification and Characterization of CdgB, a Diguanylate Cyclase Involved in Developmental Processes in Streptomyces coelicolor , 2011, Journal of bacteriology.

[36]  Yong Xiong,et al.  Structural basis of cooperative ligand binding by the glycine riboswitch. , 2011, Chemistry & biology.

[37]  V. Burrus,et al.  c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases , 2011, PLoS genetics.

[38]  A. Serganov,et al.  Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. , 2010, Molecular cell.

[39]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[40]  Matthias Christen,et al.  Asymmetrical Distribution of the Second Messenger c-di-GMP upon Bacterial Cell Division , 2010, Science.

[41]  Ziniu Yu,et al.  Complete Genome Sequence of Bacillus thuringiensis Mutant Strain BMB171 , 2010, Journal of bacteriology.

[42]  R. Seifert,et al.  A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. , 2010, Journal of microbiological methods.

[43]  X. Fang,et al.  A post‐translational, c‐di‐GMP‐dependent mechanism regulating flagellar motility , 2010, Molecular microbiology.

[44]  B. Raymond,et al.  Bacillus thuringiensis: an impotent pathogen? , 2010, Trends in microbiology.

[45]  Kathryn D. Smith,et al.  Structural basis of ligand binding by a c-di-GMP riboswitch , 2009, Nature Structural &Molecular Biology.

[46]  R. Breaker,et al.  A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. , 2009, RNA.

[47]  D. Chatterji,et al.  Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. , 2008, Microbiology.

[48]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[49]  R. Breaker Complex Riboswitches , 2008, Science.

[50]  Scott A Strobel,et al.  Chemical basis of glycine riboswitch cooperativity. , 2007, RNA.

[51]  Catherine A. Wakeman,et al.  Structure and Mechanism of a Metal-Sensing Regulatory RNA , 2007, Cell.

[52]  R. Breaker,et al.  Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. , 2007, RNA.

[53]  P. Serror,et al.  C-Terminal WxL Domain Mediates Cell Wall Binding in Enterococcus faecalis and Other Gram-Positive Bacteria , 2006, Journal of bacteriology.

[54]  Regine Hengge,et al.  Cyclic‐di‐GMP‐mediated signalling within the σS network of Escherichia coli , 2006, Molecular microbiology.

[55]  Jeffrey E. Barrick,et al.  Tandem Riboswitch Architectures Exhibit Complex Gene Control Functions , 2006, Science.

[56]  Matthias Christen,et al.  Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP* , 2005, Journal of Biological Chemistry.

[57]  C. Yanofsky,et al.  New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. , 2005, Trends in genetics : TIG.

[58]  Hyungtae Kim,et al.  The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice , 2005, Nucleic acids research.

[59]  B. Giese,et al.  Structural basis of activity and allosteric control of diguanylate cyclase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Jeffrey E. Barrick,et al.  New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Jeffrey E. Barrick,et al.  Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. , 2004, Nucleic acids research.

[62]  Dan Mercola,et al.  A Glycine-Dependent Riboswitch That Uses Cooperative Binding to Control Gene Expression , 2004 .

[63]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[64]  Patrick Goymer,et al.  Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus , 2003, Molecular microbiology.

[65]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[66]  M. Ehrenberg,et al.  Activities of constitutive promoters in Escherichia coli. , 1999, Journal of molecular biology.

[67]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[69]  D. Amikam,et al.  Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens , 1989, Journal of bacteriology.