Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method

[1]  Markus Reichstein,et al.  A methodology to derive global maps of leaf traits using remote sensing and climate data , 2018, Remote Sensing of Environment.

[2]  J. Peñuelas,et al.  Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index , 2018 .

[3]  Onisimo Mutanga,et al.  Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data , 2018 .

[4]  Onisimo Mutanga,et al.  Evaluating the Applications of the Near-Infrared Region in Mapping Foliar N in the Miombo Woodlands , 2018, Remote. Sens..

[5]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[6]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[7]  Marco Heurich,et al.  Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest , 2016, Remote. Sens..

[8]  J. Peñuelas,et al.  Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth , 2016 .

[9]  J. Peñuelas,et al.  Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain , 2016 .

[10]  S. Ollinger,et al.  Examining spectral reflectance features related to foliar nitrogen in forests: Implications for broad-scale nitrogen mapping , 2016 .

[11]  Ruben Van De Kerchove,et al.  Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[12]  Thomas C. Edwards,et al.  Machine learning for predicting soil classes in three semi-arid landscapes , 2015 .

[13]  J. Peñuelas,et al.  Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions , 2015 .

[14]  Onisimo Mutanga,et al.  Evaluating the robustness of models developed from field spectral data in predicting African grass foliar nitrogen concentration using WorldView-2 image as an independent test dataset , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[15]  Rhett L. Mohler,et al.  Estimating Canopy Nitrogen Content in a Heterogeneous Grassland with Varying Fire and Grazing Treatments: Konza Prairie, Kansas, USA , 2014, Remote. Sens..

[16]  Onisimo Mutanga,et al.  Estimation of Canopy Nitrogen Concentration Across C3 and C4 Grasslands Using WorldView-2 Multispectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Susan L. Ustin,et al.  Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices , 2014 .

[18]  Anatoly A. Gitelson,et al.  Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[19]  M. Schaepman,et al.  Review of optical-based remote sensing for plant trait mapping , 2013 .

[20]  Béatrice Josse,et al.  Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes , 2013 .

[21]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[22]  M. Cho,et al.  Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data , 2013, Landscape Ecology.

[23]  Andrew K. Skidmore,et al.  Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[24]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[25]  D. Gianelle,et al.  The contribution of nitrogen deposition to the photosynthetic capacity of forests , 2012 .

[26]  Peter B Reich,et al.  Key canopy traits drive forest productivity , 2012, Proceedings of the Royal Society B: Biological Sciences.

[27]  J. Stoddard,et al.  Do Nutrient Limitation Patterns Shift from Nitrogen Toward Phosphorus with Increasing Nitrogen Deposition Across the Northeastern United States? , 2012, Ecosystems.

[28]  Weixing Cao,et al.  Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat , 2012 .

[29]  Charles T. Driscoll,et al.  Foliar Nitrogen Responses to the Environmental Gradient Matrix of the Adirondack Park, New York , 2012 .

[30]  J. Peñuelas,et al.  Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain) , 2011 .

[31]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[32]  P. Reich,et al.  Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. , 2011, Ecology letters.

[33]  X. Yao,et al.  Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance , 2011 .

[34]  D. Haboudane,et al.  New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat , 2010 .

[35]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[36]  S. Frolking,et al.  Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks , 2008, Proceedings of the National Academy of Sciences.

[37]  A. Arneth,et al.  Nitrogen controls plant canopy light-use efficiency in temperate and boreal ecosystems , 2008 .

[38]  S. Ollinger,et al.  A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems , 2008 .

[39]  I. Prentice,et al.  Terrestrial nitrogen cycle simulation with a dynamic global vegetation model , 2008 .

[40]  Charles T Driscoll,et al.  Foliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species. , 2007, Environmental science & technology.

[41]  R. Crabtree,et al.  Hyperspectral One-Meter-Resolution Remote Sensing in Yellowstone National Park, Wyoming: I. Forage Nutritional Values , 2005 .

[42]  P. Reich,et al.  Assessing the generality of global leaf trait relationships. , 2005, The New phytologist.

[43]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[44]  K. Hikosaka Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance , 2004, Journal of Plant Research.

[45]  P. Reich,et al.  Global patterns of plant leaf N and P in relation to temperature and latitude. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[47]  A. Skidmore,et al.  Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features , 2004 .

[48]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[49]  J. Peñuelas,et al.  Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals , 2002 .

[50]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[51]  P. Reich,et al.  Generality of leaf trait relationships: a test across six biomes: Ecology , 1999 .

[52]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[53]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[54]  Zeng De-hui Diagnosis methods of N and P limitation to tree growth:A review , 2009 .

[55]  J. R. Evans Photosynthesis and nitrogen relationships in leaves of C3 plants , 2004, Oecologia.

[56]  Lalit Kumar,et al.  Imaging Spectrometry and Vegetation Science , 2001 .