Spontaneous and induced mouse mutations with cerebellar dysfunctions: Behavior and neurochemistry

Grid2(Lc) (Lurcher), Grid2(ho) (hot-foot), Rora(sg) (staggerer), nr (nervous), Agtpbp1(pcd) (Purkinje cell degeneration), Reln(rl) (reeler), and Girk2(Wv) (Weaver) are spontaneous mutations with cerebellar atrophy, ataxia, and deficits in motor coordination tasks requiring balance and equilibrium. In addition to these signs, the Dst(dt) (dystonia musculorum) spinocerebellar mutant displays dystonic postures and crawling. More recently, transgenic models with human spinocerebellar ataxia mutations and alterations in calcium homeostasis have been shown to exhibit cerebellar anomalies and motor coordination deficits. We describe neurochemical characteristics of these mutants with respect to regional brain metabolism as well as amino acid and biogenic amine concentrations, uptake sites, and receptors.

[1]  Youngnam Kang,et al.  Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice , 1995, Cell.

[2]  E. Mugnaini,et al.  Effects of the murine mutation ‘nervous’ on neurons in cerebellum and dorsal cochlear nucleus , 1988, Journal of neurocytology.

[3]  B. Ghetti,et al.  Topographic distribution of dopamine uptake, choline uptake, choline acetyltransferase, and GABA uptake in the striata of weaver mutant mice , 1992, Neurochemical Research.

[4]  J. Stein,et al.  Role of the cerebellum in the visual guidance of movement. , 1992, Nature.

[5]  S. Roffler-Tarlov,et al.  Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. , 1998, Developmental biology.

[6]  K. Caddy,et al.  Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  Robert Lalonde Motor abnormalities in staggerer mutant mice , 2004, Experimental Brain Research.

[8]  T. Reader,et al.  Regional distribution of 5-HT transporters in the brain of wild type and `Purkinje cell degeneration' mutant mice: a quantitative autoradiographic study with [3H]citalopram , 1998, Journal of Chemical Neuroanatomy.

[9]  A. Messer Amino Acid Changes in the Mouse Mutant Dystonia Musculorum Similar to Those in Friedreich’s Ataxia , 1982, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[10]  A. Graybiel,et al.  Expression of the weaver gene in dopamine-containing neural systems is dose-dependent and affects both striatal and nonstriatal regions , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  M. Doughty,et al.  Target-Related and Intrinsic Neuronal Death in Lurcher Mutant Mice Are Both Mediated by Caspase-3 Activation , 2000, The Journal of Neuroscience.

[12]  A. Konnerth,et al.  Calbindin in Cerebellar Purkinje Cells Is a Critical Determinant of the Precision of Motor Coordination , 2003, The Journal of Neuroscience.

[13]  S. Schiffmann,et al.  Reelin mRNA Expression During Mouse Brain Development , 1997, The European journal of neuroscience.

[14]  Robert Lalonde,et al.  Primary neurologic screening and motor coordination of Dst dt-J mutant mice (dystonia musculorum) with spinocerebellar atrophy , 2005, Physiology & Behavior.

[15]  B. G. Grover,et al.  Cerebellar afferents in normal and Weaver mutant mice. , 1986, Brain, Behavior and Evolution.

[16]  H. Ino Immunohistochemical Characterization of the Orphan Nuclear Receptor RORα in the Mouse Nervous System , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[17]  C. Sotelo,et al.  Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: A quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice , 1986, Brain Research.

[18]  B. Ghetti,et al.  Loss of Purkinje cell‐associated benzodiazepine receptors spares a high affinity subpopulation: A study with pcd mutant mice , 1983, Journal of neuroscience research.

[19]  P. Guidetti,et al.  Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die , 2001, Neuroreport.

[20]  Karl Herrup,et al.  CELL NUMBER IN THE INFERIOR OLIVE OF NERVOUS AND LEANER MUTANT MICE , 2004, Journal of neurogenetics.

[21]  Y. Ushio,et al.  Lack of Reelin causes malpositioning of nigral dopaminergic neurons: Evidence from comparison of normal and Relnrl mutant mice , 2003, The Journal of comparative neurology.

[22]  G. Blatt,et al.  A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice , 1985, The Journal of comparative neurology.

[23]  J. Guénet,et al.  Hotfoot Mouse Mutations Affect the δ2 Glutamate Receptor Gene and Are Allelic to Lurcher , 1998 .

[24]  W. Cowan,et al.  The morphology of the hippocampus and dentate gyrus in normal and reeler mice , 1979, The Journal of comparative neurology.

[25]  B. Ghetti,et al.  Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice , 1987, The Journal of comparative neurology.

[26]  W. Oertel Neurotransmitters in the cerebellum. Scientific aspects and clinical relevance. , 1993, Advances in neurology.

[27]  I. Kanazawa,et al.  Central noradrenaline metabolism in cerebellar ataxic mice , 1982, Brain Research.

[28]  V Taglietti,et al.  The weaver Mutation Causes a Loss of Inward Rectifier Current Regulation in Premigratory Granule Cells of the Mouse Cerebellum , 1998, The Journal of Neuroscience.

[29]  J. Rossant,et al.  The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1 , 1995, Nature Genetics.

[30]  A. Graybiel,et al.  Dopamine D1 binding sites in the striatum of the mutant mouse weaver , 1989, Neuroscience.

[31]  J. Changeux,et al.  Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  T. Reader,et al.  Autoradiography of Glutamate Receptor Binding in Adult Lurcher Mutant Mice , 2000, Journal of neuropathology and experimental neurology.

[33]  D. Linden,et al.  Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene , 1997, Nature.

[34]  David R. Cox,et al.  A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation , 1995, Nature Genetics.

[35]  Michael R. Martin Morphology of the cochlear nucleus of the normal and reeler mutant mouse , 1981, The Journal of comparative neurology.

[36]  T. Reader,et al.  Distribution of dopamine transporters in basal ganglia of cerebellar ataxic mice by [125I]RTI-121 quantitative autoradiography , 1998, Neurochemistry International.

[37]  G. Mittleman,et al.  The cerebellum and spatial ability: dissection of motor and cognitive components with a mouse model system , 2003, The European journal of neuroscience.

[38]  G. Shepherd,et al.  Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD) , 1982, Brain Research.

[39]  N. Matsokis,et al.  [3H]GABA binding in the cerebellum of the reeler murine mutant , 1985, Neurochemistry International.

[40]  V. Deiss,et al.  Hyposmia for Butanol and Vanillin in Mutant Staggerer Male Mice , 1997, Physiology & Behavior.

[41]  D. Falconer,et al.  CLINICAL AND PATHOLOGICAL STUDIES OF AN HEREDITARY NEUROPATHY IN MICE (DYSTONIA MUSCULORUM). , 1964, Brain : a journal of neurology.

[42]  V. Deiss,et al.  Regional brain variations of cytochrome oxidase activity and motor co-ordination in staggerer mutant mice , 1999, Neuroscience.

[43]  W. Mcbride,et al.  CONTENTS OF SEVERAL AMINO ACIDS IN THE CEREBELLUM, BRAIN STEM AND CEREBRUM OF THE ‘STAGGERER’, ‘WEAVER’ AND ‘NERVOUS’ NEUROLOGICALLY MUTANT MICE 1 , 1976, Journal of neurochemistry.

[44]  P. Thier,et al.  Saccadic Dysmetria and Adaptation after Lesions of the Cerebellar Cortex , 1999, The Journal of Neuroscience.

[45]  J. F. Stein,et al.  Role of the cerebellum in the visual guidance of movement , 1986, Nature.

[46]  J. Rogers,et al.  Calretinin in rat brain: An immunohistochemical study , 1992, Neuroscience.

[47]  N. Brose,et al.  Differential expression of two novel Munc13 proteins in rat brain. , 1999, The Biochemical journal.

[48]  A. Goffinet,et al.  Abnormalities in the cerebellum and brainstem in homozygous lurcher mice , 1997, Neuroscience.

[49]  T. Curran,et al.  A protein related to extracellular matrix proteins deleted in the mouse mutant reeler , 1995, Nature.

[50]  F. Lestienne,et al.  Spontaneous alternation, motor activity, and spatial learning in hot-foot mutant mice , 2004, Journal of Comparative Physiology A.

[51]  A. Goffinet The embryonic development of the inferior olivary complex in normal and reeler (rlORL) mutant mice , 1983, The Journal of comparative neurology.

[52]  Y. Lamarre,et al.  Does the mutant mouse lurcher have deficits in spatially oriented behaviours? , 1988, Brain Research.

[53]  A. Rotter,et al.  Cerebellar benzodiazepine receptor distribution: An autoradiographic study of the normal C57BL/6J and Purkinje cell degeneration mutant mouse , 1986, Neuroscience Letters.

[54]  J. Caston,et al.  Differential Roles of Cerebellar Cortex and Deep Cerebellar Nuclei in Learning and Retention of a Spatial Task: Studies in Intact and Cerebellectomized Lurcher Mutant Mice , 1998, Behavior genetics.

[55]  Immobility Responses in Lurcher Mutant Mice , 1998, Behavior genetics.

[56]  Robert Lalonde,et al.  Spontaneous alternation and exploration in weaver mutant mice , 1988, Behavioural Brain Research.

[57]  L. Naudon,et al.  Regional brain variations of cytochrome oxidase activity and motor coordination in Girk2 Wv (Weaver) mutant mice , 2006, Neuroscience.

[58]  B. Ghetti,et al.  STUDIES ON THE PURKINJE CELL DEGENERATION (pcd) MUTANT: PRIMARY PATHOLOGY AND TRANSNEURONAL CHANGES , 1978 .

[59]  M. Cuénod,et al.  Kainic acid receptor sites in the cerebellum of nervous, Purkinje cell degeneration, reeler, staggerer and weaver mice mutant strains , 1982, Brain Research.

[60]  C. Sotelo,et al.  Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: A model to study presynaptic stabilization , 1979, Brain Research.

[61]  S. Roffler-Tarlov,et al.  Cell death during development of testis and cerebellum in the mutant mouse weaver. , 1998, Developmental biology.

[62]  M. Botez,et al.  Exploration and motor coordination in dystonia musculorum mutant mice , 1994, Physiology & Behavior.

[63]  F. Lestienne,et al.  Neurobehavioral evaluation of lurcher mutant mice during ontogeny. , 1997, Brain research. Developmental brain research.

[64]  T. Reader,et al.  Regional distribution of the 5-HT innervation in the brain of normal and lurcher mice as revealed by [3H]citalopram quantitative autoradiography , 1996, Journal of Chemical Neuroanatomy.

[65]  N. Panagopoulos,et al.  Kinetic and pharmacologic characterization of dopamine binding in the mouse cerebellum and the effects of the reeler mutation , 1988, Journal of neuroscience research.

[66]  J. C. Fentress,et al.  The development of swimming behavior in the neurological mutant weaver mouse. , 1996, Developmental psychobiology.

[67]  J. Caston,et al.  Motor skills and motor learning in Lurcher mutant mice during aging , 2001, Neuroscience.

[68]  S. Koekkoek,et al.  Recording Eye Movements in Mice: A New Approach to Investigate the Molecular Basis of Cerebellar Control of Motor Learning and Motor Timing , 1998, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[69]  V. Caviness,et al.  Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. , 1982, Brain research.

[70]  Robert Lalonde,et al.  Elevated +-maze and hole-board exploration in lurcher mutant mice , 1995, Brain Research.

[71]  R. Sidman,et al.  Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice , 1978, The Journal of comparative neurology.

[72]  D. Gordon,et al.  Changes in whole tissue biosynthesis of gamma-amino butyric acid (GABA) in basal ganglia of the dystonia (dtAlb) mouse. , 1979, Life sciences.

[73]  L. Rinaman,et al.  Ectopic sympathetic preganglionic neurons maintain proper connectivity in the reeler mutant mouse , 2003, Neuroscience.

[74]  Differential effects of l-trytophan and buspirone on biogenic amine contents and metabolism in Lurcher mice cerebellum , 2000, Neuroscience Letters.

[75]  K. Sakimura,et al.  The Lurcher mutation reveals Ca2+ permeability and PKC modification of the GluRδ channels , 2001, Neuroscience Research.

[76]  Ramin Homayouni,et al.  Reelin Is a Ligand for Lipoprotein Receptors , 1999, Neuron.

[77]  M. Zigmond,et al.  Effects of Purkinje cell degeneration on the noradrenergic projection to mouse cerebellar cortex , 1984, Brain Research.

[78]  J. Nurnberger,et al.  Residual benzodiazepine (BZ) binding in the cortex ofpcd mutant cerebella and qualitative BZ binding in the deep cerebellar nuclei of control and mutant mice: an autoradiographic study , 1985, Brain Research.

[79]  J. Caston,et al.  Stress and anxious-related behaviors in Lurcher mutant mice , 2004, Brain Research.

[80]  K. Ohsugi,et al.  Serotonin metabolism in the CNS in cerebellar ataxic mice , 1986, Experientia.

[81]  C. Takayama Altered distribution of inhibitory synaptic terminals in reeler cerebellum with special reference to malposition of GABAergic neurons , 1994, Neuroscience Research.

[82]  G. Brüning,et al.  Autoradiographic analysis of benzodiazepine receptors in mutant mice with cerebellar defects. , 1990, Journal of Chemical Neuroanatomy.

[83]  C. Strazielle,et al.  Dystonia musculorum mutation and myosin heavy chain expression in skeletal and cardiac muscles , 1999, Journal of cellular biochemistry.

[84]  Robert Lalonde,et al.  Motor Coordination, Exploration, and Spatial Learning in a Natural Mouse Mutation (nervous) with Purkinje Cell Degeneration , 2003, Behavior genetics.

[85]  R. Lalonde Exploration and spatial learning in staggerer mutant mice. , 1987, Journal of neurogenetics.

[86]  V. Deiss,et al.  Cytochrome oxidase activity in the olfactory system of staggerer mutant mice , 2001, Brain Research.

[87]  A. Graybiel,et al.  Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  G. Goodall,et al.  Abnormal patterns of maze patrolling in the mutant mouse staggerer. , 1987, Behavioral and neural biology.

[89]  M. Lazdunski,et al.  Comparative expression of the inward rectifier K+ channel GIRK2 in the cerebellum of normal and weaver mutant mice , 1997, Brain Research.

[90]  Masahiko Watanabe,et al.  Cerebellum of the adult reeler mutant mouse contains two Purkinje cell populations with respect to gene expression for the N-methyl-d-aspartate receptor channel , 1995, Neuroscience Research.

[91]  K. Herrup,et al.  Quantitative examination of the deep cerebellar nuclei in the staggerer mutant mouse , 1981, Brain Research.

[92]  H. Zoghbi,et al.  Mice Lacking Ataxin-1 Display Learning Deficits and Decreased Hippocampal Paired-Pulse Facilitation , 1998, The Journal of Neuroscience.

[93]  B. Liss,et al.  The weaver Mouse gain-of-functionPhenotype of Dopaminergic Midbrain Neurons Is Determined by Coactivation of wvGirk2 and K-ATP Channels , 1999, The Journal of Neuroscience.

[94]  L. Triarhou,et al.  AMPA receptor subunit RNA transcripts and [3H]AMPA binding in the cerebellum of normal and pcd mutant mice: an in situ hybridization study combined with receptor autoradiography , 2002, Journal of Neural Transmission.

[95]  C. Yoon,et al.  Abnormal rate of granule cell migration in the cerebellum of "Weaver" mutant mice. , 1972, Developmental biology.

[96]  T. Reader,et al.  Brain Dopamine and Amino Acid Concentrations in Lurcher Mutant Mice , 1998, Brain Research Bulletin.

[97]  R. J. Mullen,et al.  Retinal degeneration in the nervous mutant mouse. II. Electron microscopic analysis , 1993, The Journal of comparative neurology.

[98]  G. Blatt,et al.  A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. , 1985, Journal of neurogenetics.

[99]  K. Herrup,et al.  Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death , 1982, Brain Research.

[100]  B. Ghetti,et al.  Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice , 2004, Experimental Brain Research.

[101]  Richard J Smeyne,et al.  Tune into the weaver channel , 1995, Nature Genetics.

[102]  R. Sidman,et al.  Concentrations of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants , 1978, Brain Research.

[103]  P. Gaspar,et al.  Sparing of the dopaminergic neurons containing Calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice , 1994, Neuroscience.

[104]  Harry T Orr,et al.  SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat , 1995, Cell.

[105]  J. Roder,et al.  The Lurcher Mutation of an α-Amino-3-hydroxy-5-methyl- 4-isoxazolepropionic Acid Receptor Subunit Enhances Potency of Glutamate and Converts an Antagonist to an Agonist* , 2000, The Journal of Biological Chemistry.

[106]  N. Delhaye-bouchaud,et al.  Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. , 1985, Brain research.

[107]  Y Agid,et al.  An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain , 1997, Neuroscience.

[108]  C. Gorenstein,et al.  The localization of GABAA receptors in mice with mutations affecting the structure and connectivity of the cerebellum , 1988, Brain Research.

[109]  R. Sidman,et al.  Degeneration of thalamic neurons in “Purkinje cell degeneration” mutant mice. I. Distribution of neuron loss , 1985, The Journal of comparative neurology.

[110]  C. Sotelo,et al.  Heterologous synapses upon purkinje cells in the cerebellum of the reeler mutant mouse: An experimental light and electron microscopic study , 1981, Brain Research.

[111]  C. Sotelo,et al.  Hot-foot murine mutation: behavioral effects and neuroanatomical alterations , 1990, Brain Research.

[112]  A. Graybiel,et al.  The postnatal development of the dopamine-containing innervation of dorsal and ventral striatum: effects of the weaver gene , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[113]  Y. Hayashizaki,et al.  The reeler gene encodes a protein with an EGF–like motif expressed by pioneer neurons , 1995, Nature Genetics.

[114]  Robert Lalonde,et al.  Rotorod sensorimotor learning in cerebellar mutant mice , 1995, Neuroscience Research.

[115]  J. Heckroth Quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number , 1994, The Journal of comparative neurology.

[116]  B. Birren,et al.  Disruption of the nuclear hormone receptor RORα in staggerer mice , 1996, Nature.

[117]  R. J. Mullen,et al.  Purkinje cell degeneration, a new neurological mutation in the mouse. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Y. Bailly,et al.  Lurcher GRID2-Induced Death and Depolarization Can Be Dissociated in Cerebellar Purkinje Cells , 2003, Neuron.

[119]  Robert Lalonde,et al.  Regional brain variations of cytochrome oxidase activity and motor coordination in hot‐foot mutant mice , 1998, The European journal of neuroscience.

[120]  S. Oda,et al.  Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse , 1993, Anatomy and Embryology.

[121]  K. Mikoshiba,et al.  Observations on Golgi epithelial cells and granule cells in the cerebellum of the reeler mutant mouse. , 1985, Brain research.

[122]  K. Herrup,et al.  Failed Cell Migration and Death of Purkinje Cells and Deep Nuclear Neurons in the weaver Cerebellum , 1997, The Journal of Neuroscience.

[123]  W. Mcbride,et al.  Contents of serotonin, norepinephrine and dopamine in the cerebrum of the ‘staggerer’, ‘weaver’ and ‘nervous’ neurologically mutant mice , 1977, Journal of neurochemistry.

[124]  Robert Lalonde,et al.  Grooming in Lurcher Mutant Mice , 1998, Physiology & Behavior.

[125]  Reactions of staggerer and non-mutant male mice to female urine and vaginal secretion odors , 1992, Behavioural Processes.

[126]  R. Bronson,et al.  Genetic and age related models of neurodegeneration in mice: dystrophic axons. , 1992, Journal of neurogenetics.

[127]  Robert Lalonde,et al.  Chapter 4.3 Motor performance of spontaneous murine mutations with cerebellar atrophy , 1999 .

[128]  K. Herrup,et al.  Cerebellar Purkinje cells provide target support over a limited spatial range: evidence from lurcher chimeric mice. , 1991, Brain research. Developmental brain research.

[129]  H. Zoghbi,et al.  Reduction of Purkinje Cell Pathology in SCA1 Transgenic Mice by p53 Deletion , 2001, Neurobiology of Disease.

[130]  G. Blatt,et al.  The olivocerebellar projection in normal (+ / +), heterozygous weaver (wv/ +), and homozygous weaver (wv/wv) mutant mice: comparison of terminal pattern and topographic organization , 2004, Experimental Brain Research.

[131]  J. Coyle,et al.  Synaptic Chemistry Associated with Aberrant Neuronal Development in the Reeler Mouse , 1983, Journal of neurochemistry.

[132]  M. Wong-Riley Cytochrome oxidase: an endogenous metabolic marker for neuronal activity , 1989, Trends in Neurosciences.

[133]  S. Bao,et al.  Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[134]  Robert Lalonde,et al.  Swimming activity in dystonia musculorum mutant mice , 1993, Physiology & Behavior.

[135]  M. Botez,et al.  Motor abnormalities in lurcher mutant mice , 1992, Physiology & Behavior.

[136]  M. Botez,et al.  Delayed spontaneous alternation in Purkinje cell degeneration mutant mice , 1987, Neuroscience Letters.

[137]  N. Strominger,et al.  Effects of age and strain differences on the red nucleus of the mouse mutant Dystonia musculorum , 1983, The Anatomical record.

[138]  Masahiko Watanabe,et al.  Prominent expression of nuclear hormone receptor RORα in Purkinje cells from early development , 1997, Neuroscience Research.

[139]  R. Swain,et al.  Pretraining enhances recovery from visuospatial deficit following cerebellar dentate nucleus lesion. , 2003, Behavioral neuroscience.

[140]  P. Rakić,et al.  Mechanisms of cortical development: a view from mutations in mice. , 1978, Annual review of neuroscience.

[141]  Richard J Smeyne,et al.  Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  M. Botez,et al.  Spontaneous alternation and habituation in Purkinje cell degeneration mutant mice , 1987, Brain Research.

[143]  A. Graybiel,et al.  Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum , 1984, Nature.

[144]  F. Crépel,et al.  Effect of excitatory amino acids on purkinje cell dendrites in cerebellar slices from normal and staggerer mice , 1984, Neuroscience.

[145]  D. Nelson,et al.  The Inwardly Rectifying K+ Channel Subunit GIRK1 Rescues the GIRK2 weaver Phenotype , 1999, The Journal of Neuroscience.

[146]  Robert Lalonde Motor abnormalities in weaver mutant mice , 2004, Experimental Brain Research.

[147]  R. Lalonde,et al.  Regional brain variations of cytochrome oxidase activity and motor coordination in Lurcher mutant mice , 1998, Experimental Brain Research.

[148]  C. Sotelo,et al.  Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. , 1987, Developmental biology.

[149]  J. Nurnberger,et al.  Noradrenergic innervation of the cerebellar cortex in normal and in Purkinje cell degeneration mutant mice: Evidence for long term survival following loss of the two major cerebellar cortical neuronal populations , 1986, Neuroscience.

[150]  C. Verney,et al.  Altered development of dopaminergic cells in the retina of weaver mice , 1999, The Journal of comparative neurology.

[151]  T. Moss Schwann cell involvement in the neurological lesion of the dystonic mutant mouse A nerve grafting study , 1981, Journal of the Neurological Sciences.

[152]  W. N. Dember Stimulus alternation in peripherally blinded rats. , 1958, Canadian journal of psychology.

[153]  John Shelton,et al.  Reeler/Disabled-like Disruption of Neuronal Migration in Knockout Mice Lacking the VLDL Receptor and ApoE Receptor 2 , 1999, Cell.

[154]  C. Harston,et al.  Altered histofluorescent pattern of noradrenergic innervation of the cerebellum of the mutant mouse Purkinje cell degeneration , 1986, Neuroscience.

[155]  Robert Lalonde,et al.  Treadmill Performance of Mice With Cerebellar Lesions: 1. Purkinje Cell Degeneration Mutant Mice , 1998 .

[156]  D. Jacobowitz,et al.  Calretinin-containing pathways in the rat forebrain , 1995, Brain Research.

[157]  J. Caston,et al.  Role of the cerebellum in exploration behavior , 1998, Brain Research.

[158]  J. Penney,et al.  Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse , 1987, Neuroscience.

[159]  M. Botez,et al.  Hole poking and motor coordination in lurcher mutant mice , 1993, Physiology & Behavior.

[160]  H. Zoghbi,et al.  Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. , 2001, Human molecular genetics.

[161]  N. Heintz,et al.  A Novel Protein Complex Linking the δ2 Glutamate Receptor and Autophagy Implications for Neurodegeneration in Lurcher Mice , 2002, Neuron.

[162]  B. Beer,et al.  Evidence that benzodiazepine receptors reside on cerebellar purkinje cells: studies with "nervous" mutant mice. , 1978, Life sciences.

[163]  D. Goldowitz The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: Evidence from homozygous weaver chimeras , 1989, Neuron.

[164]  H. Yamamura,et al.  Benzodiazepine receptors: alterations in mutant mouse cerebellum. , 1979, European journal of pharmacology.

[165]  M. Botez,et al.  Spontaneous alternation and habituation in a t-maze in nervous mutant mice. , 1986, Behavioral neuroscience.

[166]  B. Ghetti,et al.  Serotonin concentration and turnover in cerebelum and other brain regions of pcd mutant mice , 1988, Brain Research.

[167]  K. Mikoshiba,et al.  Developmental studies on the cerebellum from reeler mutant mouse in vivo and in vitro. , 1980, Developmental biology.

[168]  L. Jan,et al.  Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[169]  L. Eisenman,et al.  Purkinje cell reduction in the reeler mutant mouse: A quantitative immunohistochemical study , 1989, The Journal of comparative neurology.

[170]  T. Südhof,et al.  The Cerebellum-Specific Munc13 Isoform Munc13-3 Regulates Cerebellar Synaptic Transmission and Motor Learning in Mice , 2001, The Journal of Neuroscience.

[171]  U. Grüsser-Cornehls,et al.  DNA fragmentation and activation of c‐Jun in the cerebellum of mutant mice (weaver, Purkinje cell degeneration) , 1995, Neuroreport.

[172]  A. Graybiel,et al.  Cell death in the midbrain of the murine mutation weaver , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[173]  Robert Lalonde Delayed spontaneous alternation in weaver mutant mice , 1986, Brain Research.

[174]  G. Cheron,et al.  Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[175]  N. Matsokis,et al.  Cerebellar and striatal dopamine receptors: Effects of reeler and weaver murine mutations , 1993, Journal of neuroscience research.

[176]  R. Kothary,et al.  Dystonin Expression in the Developing Nervous System Predominates in the Neurons That Degenerate indystonia musculorumMutant Mice , 1995, Molecular and Cellular Neuroscience.

[177]  E. Fuchs,et al.  Gene targeting of BPAG1: Abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration , 1995, Cell.

[178]  B. Ghetti,et al.  Atrophy and loss of dopaminergic mesencephalic neurons in heterozygous weaver mice , 2006, Experimental Brain Research.

[179]  F. Bloom,et al.  Catecholamines in mutant mouse cerebellum: Fluorescence microscopic and chemical studies , 1975, Brain Research.

[180]  N. Heintz,et al.  A high-resolution genetic map of the nervous locus on mouse chromosome 8. , 1998, Genomics.

[181]  L. Descarries,et al.  Central serotonin system in dystonia musculorum mutant mice: Biochemical, autoradiographic and immunocytochemical data , 2000, Synapse.

[182]  Robert Lalonde,et al.  Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats , 2001, Behavioural Brain Research.

[183]  T. Reader,et al.  Regional brain distribution of noradrenaline uptake sites, and of α1-, α2- and β-adrenergic receptors in PCD mutant mice: a quantitative autoradiographic study , 1999, Neuroscience.

[184]  R. Sidman,et al.  Purkinje cell degeneration (pcd) Phenotypes Caused by Mutations in the Axotomy-Induced Gene, Nna1 , 2002, Science.

[185]  B. Ghetti,et al.  Stabilisation of neurone number in the inferior olivary complex of aged ‘Purkinje cell degeneration’ mutant mice , 2004, Acta Neuropathologica.

[186]  A. Graybiel,et al.  Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. II. High affinity uptake sites for dopamine , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[187]  J. Caston,et al.  Impaired motor skills on static and mobile beams in lurcher mutant mice , 1997, Experimental Brain Research.

[188]  Karl Herrup,et al.  Regional variation and absence of large neurons in the cerebellum of the staggerer mouse , 1979, Brain Research.

[189]  T. Curran,et al.  Role of the reelin signaling pathway in central nervous system development. , 2001, Annual review of neuroscience.

[190]  P. Thier,et al.  Absence of a common functional denominator of visual disturbances in cerebellar disease. , 1999, Brain : a journal of neurology.

[191]  R. Burke,et al.  Neuron Death in the Substantia Nigra of Weaver Mouse Occurs Late in Development and Is Not Apoptotic , 1996, The Journal of Neuroscience.

[192]  Robert Lalonde,et al.  Treadmill Performance of Mice with Cerebellar Lesions: 2. Lurcher Mutant Mice , 2000, Neurobiology of Learning and Memory.

[193]  U. Dräger,et al.  Observations on the organization of the visual cortex in the reeler mouse , 1981, The Journal of comparative neurology.

[194]  C. Verney,et al.  Differential activation of astrocytes and microglia during post-natal development of dopaminergic neuronal death in the weaver mouse. , 2003, Brain research. Developmental brain research.

[195]  J. Hornung,et al.  Distribution of postsynaptic GABAa receptor aggregates in the deep cerebellar nuclei of normal and mutant mice , 2002, The Journal of comparative neurology.

[196]  R. J. Mullen,et al.  Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[197]  J. C. Fentress,et al.  Neurological dysfunction expressed in the grooming behavior of developing weaver mutant mice , 1993, Behavior genetics.

[198]  C. Sotelo,et al.  Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor , 2001, Neuroscience.

[199]  G. Glaser,et al.  A Review of Mouse Mutants as Genetic Models of Epilepsy , 1985, Epilepsia.

[200]  Harry T Orr,et al.  Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice , 1999, Neuron.

[201]  G. Gerhardt,et al.  CNS monoamine levels and motoric behaviors in the hotfoot ataxic mutant , 1994, Brain Research.

[202]  C. Sotelo,et al.  Pathologic changes in the CNS of Dystonia musculorum mutant mouse: An animal model for human spinocerebellar ataxia , 1988, Neuroscience.

[203]  I. Janota Ultrastructural studies of an hereditary sensory neuropathy in mice (dystonia musculorum). , 1972, Brain : a journal of neurology.

[204]  A. Messer,et al.  The Lurcher cerebellar mutant phenotype is not expressed on a staggerer mutant background , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[205]  N. Matsokis,et al.  Interaction between [3H]flunitrazepam and [3H]GABA binding in the cerebellum of reeler mice , 1995, Neurochemistry International.

[206]  Robert Lalonde,et al.  Sensorimotor learning and retention during equilibrium tests in Purkinje cell degeneration mutant mice , 1997, Brain Research.

[207]  U. Grüsser-Cornehls,et al.  Mutant mice as a model for cerebellar ataxia , 2001, Progress in Neurobiology.

[208]  M. Becker‐André,et al.  A comparative study of Purkinje cells in two RORα gene mutant mice: staggerer and RORα−/− , 2001 .

[209]  D. Steindler,et al.  Compartmentation of the reeler cerebellum: Segregation and overlap of spinocerebellar and secondary vestibulocerebellar fibers and their target cells , 2005, Neuroscience.

[210]  B. Ghetti,et al.  Purkinje cell loss and the noradrenergic system in the cerebellum of pcd mutant mice , 1981, Brain Research Bulletin.

[211]  S. Paul,et al.  Reduction in benzodiazepine receptors associated with Purkinje cell degeneration in ‘nervous’ mutant mice , 1979, Nature.

[212]  J. Guastavino,et al.  Spatial learning in a Z-maze by cerebellar mutant mice , 1996, Physiology & Behavior.

[213]  C. Sotelo Dendritic abnormalities of Purkinje cells in the cerebellum of neurologic mutant mice (weaver and staggerer). , 1975, Advances in neurology.

[214]  J. Delgado-García,et al.  Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice , 2005, The European journal of neuroscience.

[215]  Y. Lamarre,et al.  Spontaneous alternation and habituation in lurcher mutant mice , 1986, Brain Research.

[216]  G. Sauer,et al.  Binding studies in the lurcher mutant suggest an uneven distribution of putative benzodiazepine receptor subclasses in the mouse cerebellum , 1984, Neuroscience Letters.

[217]  T. Bliss,et al.  ‘Reeler’ mutant mice fail to show spontaneous alternation , 1977, Brain Research.

[218]  Michael R. Martin Acetylcholinesterase‐positive fibers and cell bodies in the cochlear nuclei of normal and reeler mutant mice , 1981, The Journal of comparative neurology.

[219]  l-Aspartate and l-glutamate binding sites in developing normal and ‘nervous’ mutant mouse cerebellum , 1987, International Journal of Developmental Neuroscience.

[220]  N. Davidson,et al.  A regenerative link in the ionic fluxes through the weaver potassium channel underlies the pathophysiology of the mutation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[221]  J. Mariani,et al.  Motor coordination in mice with hotfoot, Lurcher, and double mutations of the Grid2 gene encoding the delta-2 excitatory amino acid receptor , 2003, Physiology & Behavior.

[222]  K. Mikoshiba,et al.  Reelin Regulates the Development and Synaptogenesis of the Layer-Specific Entorhino-Hippocampal Connections , 1999, The Journal of Neuroscience.

[223]  P. A. Fortier,et al.  Locomotor deficits in the mutant mouse, Lurcher , 2004, Experimental Brain Research.

[224]  J. Mariani,et al.  Regional brain variations of cytochrome oxidase activity in Relnrl‐orl mutant mice , 2006, Journal of neuroscience research.

[225]  S. Waxman,et al.  Orphan nuclear receptor ROR alpha gene: isoform-specific spatiotemporal expression during postnatal development of brain. , 1996, Brain research. Molecular brain research.

[226]  T. Reader,et al.  Biochemical and autoradiographic studies of the central noradrenergic system in dystonia musculorum mutant mice , 2002, Journal of Chemical Neuroanatomy.

[227]  K. Mikoshiba,et al.  Localization of gamma‐aminobutyric acid receptor binding in the mammalian cerebellum high levels in granule layer and depletion in agranular cerebella of mutant mice , 1978, Journal of neurochemistry.

[228]  J. Penney,et al.  Cerebellar excitatory amino acid binding sites in normal, granuloprival, and purkinje cell-deficient mice , 1991, Neuroscience.

[229]  J. Caston,et al.  Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: studies in intact and cerebellectomized lurcher mutant mice. , 1995, Brain research. Developmental brain research.

[230]  F. Delis,et al.  Dopamine receptor and transporter levels are altered in the brain of Purkinje Cell Degeneration mutant mice , 2004, Neuroscience.

[231]  D. Cox,et al.  Functional Effects of the Mouse weaver Mutation on G Protein–Gated Inwardly Rectifying K+ Channels , 1996, Neuron.

[232]  N. Strominger,et al.  An allele of the mouse mutant dystonia musculorum exhibits lesions in red nucleus and striatum , 1980, Neuroscience.

[233]  N. Delhaye-bouchaud,et al.  Neuronal death and synapse elimination in the olivocerebellar system. II. Cell counts in the inferior olive of adult X‐irradiated rats and weaver and reeler mutant mice , 1985, The Journal of comparative neurology.

[234]  K. Mikoshiba,et al.  Morphological and Biochemical Studies on the Cerebral Cortex from Reeler Mutant Mice: Development of Cortical Layers and Metabolic Mapping by the Deoxyglucose Method , 1980, Journal of neurochemistry.

[235]  J. Mariani,et al.  Neurobehavioral evaluation of Relnrl-orl mutant mice and correlations with cytochrome oxidase activity , 2004, Neuroscience Research.

[236]  M. Turey,et al.  The content of amino acids in the developing cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice , 1982, Brain Research.

[237]  B. Ghetti,et al.  Serotonin-immunoreactivity in the cerebellum of two neurological mutant mice and the corresponding wild-type genetic stocks , 1991, Journal of Chemical Neuroanatomy.

[238]  G. Blatt,et al.  Topographic and zonal organization of the olivocerebellar projection in the reeler mutant mouse , 1988, The Journal of comparative neurology.

[239]  T. Klockgether,et al.  Expression of neurotrophins and neurotrophin receptors in the cerebellum of mutant weaver and lurcher mice. , 1998, Brain research. Developmental brain research.

[240]  R. J. Mullen,et al.  Two new types of retinal degeneration in cerebellar mutant mice , 1975, Nature.

[241]  K. Loulier,et al.  Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis , 2002, Nature Neuroscience.

[242]  J. Caston,et al.  Delayed spontaneous alternation in intact and cerebellectomized control and lurcher mutant mice: differential role of cerebellar cortex and deep cerebellar nuclei. , 1997, Behavioral neuroscience.

[243]  A. Beaudet,et al.  Autoradiographic localization of specific kainic acid binding sites in pigeon and rat cerebellum , 1981, Brain Research.

[244]  Vincent Michel,et al.  Functional alterations in the olfactory bulb of the staggerer mutant mouse , 2000, Neuroscience Letters.

[245]  Charles R. Goodlett,et al.  Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice , 1992, Behavioural Brain Research.

[246]  B. Ghetti,et al.  Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice , 1988, Experimental Brain Research.

[247]  D. Simon,et al.  Glutamate Dehydrogenase in Cerebellar Mutant Mice: Gene Localization and Enzyme Activity in Different Tissues , 1990, Journal of neurochemistry.

[248]  H. Zoghbi,et al.  Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures , 1997, Nature.

[249]  T. J. Walsh,et al.  Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin , 2000, Behavioural Brain Research.

[250]  L. Triarhou Rate of neuronal fallout in a transsynaptic cerebellar model , 1998, Brain Research Bulletin.

[251]  F. Crépel,et al.  staggerer phenotype in retinoid-related orphan receptor α-deficient mice , 1998 .

[252]  Y. Ushio,et al.  Involvement of reelin and Cajal-Retzius cells in the developmental formation of vertical columnar structures in the cerebral cortex: evidence from the study of mouse presubicular cortex. , 2002, Cerebral cortex.

[253]  H. Orr,et al.  Spinocerebellar Ataxia Type 1—Modeling the Pathogenesis of a Polyglutamine Neurodegenerative Disorder in Transgenic Mice , 2000, Journal of neuropathology and experimental neurology.

[254]  N. Heintz,et al.  Massive Loss of Mid- and Hindbrain Neurons during Embryonic Development of Homozygous Lurcher Mice , 1997, The Journal of Neuroscience.

[255]  Robert Lalonde,et al.  Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation , 1996, Brain Research.

[256]  K. Herrup,et al.  Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. , 1983, Brain research.

[257]  R. Nowakowski,et al.  Morphological abnormalities in the hippocampus of the weaver mutant mouse , 1995, Brain Research.

[258]  J. Morgan,et al.  Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice. , 2004, Brain research. Molecular brain research.

[259]  M. Botez,et al.  Spontaneous alternation and habituation in a T-maze in nervous mutant mice return to news gothic. , 1986 .

[260]  E. Burright,et al.  Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice , 1998, Neurology.

[261]  R. Roth,et al.  Increased Noradrenergic Metabolism in the Cerebellum of the Mouse Mutant Dystonia Musculorum , 1982, Journal of neurochemistry.

[262]  R. Kothary,et al.  Dystonin is an essential component of the Schwann cell cytoskeleton at the time of myelination. , 1998, Development.

[263]  T. Kuner,et al.  The Lurcher Mutation Identifies δ2 as an AMPA/Kainate Receptor-Like Channel That Is Potentiated by Ca2+ , 2000, The Journal of Neuroscience.

[264]  B. Ghetti,et al.  Alterations in dopamine and serotonin uptake systems in the striatum of the weaver mutant mouse , 1994, Journal of Neural Transmission / General Section JNT.

[265]  R. J. Mullen,et al.  The development and degeneration of Purkinje cells in pcd mutant mice , 1978, The Journal of comparative neurology.

[266]  Masahiko Watanabe,et al.  Developmental changes in expression and distribution of the glutamate receptor channel delta 2 subunit according to the Purkinje cell maturation. , 1996, Brain research. Developmental brain research.

[267]  Dirk Jones,et al.  Quantitative mapping of cytovhrome oxidase activity in the central auditory system of the gerbil: a study with calibrated activity standards and metal-intensified histochemistry , 1994, Brain Research.

[268]  L. Eisenman,et al.  Olivary morphology and olivocerebellar topography in adult lurcher mutant mice , 1991, The Journal of comparative neurology.

[269]  P. Mermelstein,et al.  The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[270]  O. Ottersen,et al.  Differential Localization of δ Glutamate Receptors in the Rat Cerebellum: Coexpression with AMPA Receptors in Parallel Fiber–Spine Synapses and Absence from Climbing Fiber–Spine Synapses , 1997, The Journal of Neuroscience.

[271]  J. C. Fentress,et al.  Separation of activation and pattern in grooming development of weaver mice , 1996, Behavioural Brain Research.

[272]  A. Peterson,et al.  An intrinsic neuronal defect operates in dystonia musculorum: A study of dt/dt↔+/+ chimeras , 1992, Neuron.

[273]  M. Botez,et al.  Navigational deficits in weaver mutant mice , 1986, Brain Research.

[274]  S. Korsmeyer,et al.  Neurodegeneration in Lurcher Mice Occurs via Multiple Cell Death Pathways , 2000, The Journal of Neuroscience.

[275]  J. Mariani Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. , 1982, Journal of neurobiology.

[276]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[277]  Y. Agid,et al.  An immunocytochemical study of a G‐proteingated inward rectifier K+ channel (GIRK2) in the weaver mouse mesencephalon , 1997, Neuroreport.

[278]  R. J. Mullen,et al.  Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix , 1993, The Journal of comparative neurology.

[279]  H. Thoenen,et al.  Vulnerability of Midbrain Dopaminergic Neurons in Calbindin‐D28k‐deficient Mice: Lack of Evidence for a Neuroprotective Role of Endogenous Calbindin in MPTPtreated and Weaver Mice , 1997, The European journal of neuroscience.

[280]  K. Herrup,et al.  Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action , 1987, Neuroscience.

[281]  S. Wasiak,et al.  Dystonin-deficient mice exhibit an intrinsic muscle weakness and an instability of skeletal muscle cytoarchitecture. , 1999, Developmental biology.

[282]  T. Valcana,et al.  Kinetics of dopamine and noradrenaline transport in synaptosomes from cerebellum, striatum and frontal cortex of normal and reeler mice , 1991, Journal of neuroscience research.

[283]  David E. Clapham,et al.  Nonselective and Gβγ-Insensitive weaver K+ Channels , 1996, Science.

[284]  C. Quattrocchi,et al.  Reelin Promotes Peripheral Synapse Elimination and Maturation , 2003, Science.

[285]  F. Lestienne,et al.  Sensorimotor Learning in Three Cerebellar Mutant Mice , 1996, Neurobiology of Learning and Memory.

[286]  D. Goldowitz,et al.  Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. , 1986, Behavioral and neural biology.

[287]  H. Zoghbi,et al.  Purkinje Cell Expression of a Mutant Allele of SCA1in Transgenic Mice Leads to Disparate Effects on Motor Behaviors, Followed by a Progressive Cerebellar Dysfunction and Histological Alterations , 1997, The Journal of Neuroscience.

[288]  M. Yuzaki,et al.  Mutation in hotfoot‐4J mice results in retention of δ2 glutamate receptors in ER , 2002, The European journal of neuroscience.

[289]  S. Gilman,et al.  Speech disorders in olivopontocerebellar atrophy correlate with positron emission tomography findings , 1988, Annals of neurology.

[290]  L. Duchen Dystonia musculorum--an inherited disease of the nervous system in the mouse. , 1976, Advances in neurology.