Quorum sensing as a population-density-dependent determinant of bacterial physiology.

The discovery that bacterial cells can communicate with each other has led to the realization that bacteria are capable of exhibiting much more complex patterns of co-operative behaviour than would be expected for simple unicellular microorganisms. Now generically termed 'quorum sensing', bacterial cell-to-cell communication enables a bacterial population to mount a unified response that is advantageous to its survival by improving access to complex nutrients or environmental niches, collective defence against other competitive microorganisms or eukaryotic host defence mechanisms and optimization of population survival by differentiation into morphological forms better adapted to combating environmental threats. The principle of quorum sensing encompasses the production and release of signal molecules by bacterial cells within a population. Such molecules are released into the environment and, as cell numbers increase, so does the extracellular level of signal molecule, until the bacteria sense that a threshold has been reached and gene activation, or in some cases depression or repression, occurs via the activity of sensor-regulator systems. In this review, we will describe the biochemistry and molecular biology of a number of well-characterized N-acylhomoserine lactone quorum sensing systems to illustrate how bacteria employ cell-to-cell signalling to adjust their physiology in accordance with the prevailing high-population-density environment.

[1]  P. Li,et al.  TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.

[3]  M. Pirhonen,et al.  The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (sigma s). , 1999, Molecular plant-microbe interactions : MPMI.

[4]  F. O'Gara,et al.  The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. , 2000, Microbiology.

[5]  E. Greenberg,et al.  Critical regions of the Vibrio fischeri luxR protein defined by mutational analysis , 1990, Journal of bacteriology.

[6]  E. Greenberg,et al.  Acyl homoserine-lactone quorum-sensing signal generation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Gong,et al.  Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties , 1993, Journal of bacteriology.

[8]  E. Ruby,et al.  Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. , 1996, Annual review of microbiology.

[9]  Andrea L. Small,et al.  Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes , 1999, Journal of cellular biochemistry.

[10]  F. O'Gara,et al.  A Regulatory RNA (PrrB RNA) Modulates Expression of Secondary Metabolite Genes in Pseudomonas fluorescensF113 , 2000, Journal of bacteriology.

[11]  P. Dunlap,et al.  REGULATORY CIRCUITRY CONTROLLING LUMINESCENCE AUTOINDUCTION IN Vibrio fischeri , 1995 .

[12]  F. Ausubel,et al.  Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Williams,et al.  Cell Density-Dependent Starvation Survival ofRhizobium leguminosarum bv. phaseoli: Identification of the Role of an N- Acyl Homoserine Lactone in Adaptation to Stationary-Phase Survival , 1999, Journal of bacteriology.

[14]  M. Pirhonen,et al.  Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora. , 1998, Molecular plant-microbe interactions : MPMI.

[15]  S. Kjelleberg,et al.  Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. , 1999, Microbiology.

[16]  F. Fang,et al.  SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages , 1997, Infection and immunity.

[17]  B. Uhlin,et al.  Induction of haemolytic activity in Escherichia coli by the slyA gene product , 1996, Molecular microbiology.

[18]  S. Farrand,et al.  Quorum Sensing but Not Autoinduction of Ti Plasmid Conjugal Transfer Requires Control by the Opine Regulon and the Antiactivator TraM , 2000, Journal of bacteriology.

[19]  T. Baldwin,et al.  Use of regulated cell lysis in a lethal genetic selection in Escherichia coli: identification of the autoinducer-binding region of the LuxR protein from Vibrio fischeri ATCC 7744 , 1990, Journal of bacteriology.

[20]  S. Molin,et al.  Involvement of N‐acyl‐l‐homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens , 1996, Molecular microbiology.

[21]  J. Mekalanos Environmental signals controlling expression of virulence determinants in bacteria , 1992, Journal of bacteriology.

[22]  H. Schweizer,et al.  Schweizer Acylated Homoserine Lactone Synthesis Antimicrobial Triclosan and Its Role in Reductase ( FabI ) : a Target for the Enoyl-Acyl Carrier Protein aeruginosa Pseudomonas Characterization of , 1999 .

[23]  W. Fuqua,et al.  Evidence of autoinducer activity in naturally occurring biofilms. , 1997, FEMS microbiology letters.

[24]  G. Cornelis,et al.  Transcription of the yop regulon from Y. enterocolitica requires trans acting pYV and chromosomal genes. , 1987, Microbial pathogenesis.

[25]  M. Cámara,et al.  6.12 Detection, Purification, and Synthesis of n-acylhomoserine Lactone Quorum Sensing Signal Molecules , 1998 .

[26]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[27]  M K Winson,et al.  Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. , 1998, FEMS microbiology letters.

[28]  C. Fuqua,et al.  Localization of OccR‐activated and TraR‐activated promoters that express two ABC‐type permeases and the traR gene of Ti plasmid pTiR10 , 1996, Molecular microbiology.

[29]  C. Prasad Bioactive cyclic dipeptides , 1995, Peptides.

[30]  M. Schell,et al.  Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester , 1997, Journal of bacteriology.

[31]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[32]  A. Collmer,et al.  Characterization of transposon insertion out- mutants of Erwinia carotovora subsp. carotovora defective in enzyme export and of a DNA segment that complements out mutations in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Erwinia chrysanthemi , 1990, Journal of bacteriology.

[33]  C. Fuqua,et al.  The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid vir genes , 1996, Journal of bacteriology.

[34]  J. Robert-Baudouy,et al.  pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi , 1994, Molecular microbiology.

[35]  A. Collmer,et al.  Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes in Erwinia carotovora subsp. carotovora , 1991 .

[36]  M. Winson,et al.  Chitinolytic Activity in Chromobacterium violaceum: Substrate Analysis and Regulation by Quorum Sensing , 1998, Journal of bacteriology.

[37]  M. Silverman,et al.  Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi , 1990, Journal of bacteriology.

[38]  T. Romeo,et al.  The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein , 1997, Journal of bacteriology.

[39]  T. Baldwin,et al.  Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Bairoch,et al.  Molecular basis of symbiosis between Rhizobium and legumes , 1997, Nature.

[41]  A. Kerr Acquisition of virulence by non-pathogenic isolates of Agrobacterium radiobacter , 1971 .

[42]  S. Farrand,et al.  Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  F. Ausubel,et al.  Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. Greenberg,et al.  A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides , 1997, Journal of bacteriology.

[45]  Rive Mm Investigation into the regulation of exoenzyme production in Erwinia carotovora subspecies carotovora. , 1998 .

[46]  Paul Williams Compromising Bacterial Communication Skills * , 1994, The Journal of pharmacy and pharmacology.

[47]  N. Thomson,et al.  A pheromone-independent CarR protein controls carbapenem antibiotic synthesis in the opportunistic human pathogen Serratia marcescens. , 1998, Microbiology.

[48]  M. Surette,et al.  Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Pirhonen,et al.  Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora. , 1999, Microbiology.

[50]  G. Salmond,et al.  Quorum sensing: a population-density component in the determination of bacterial phenotype. , 1996, Trends in biochemical sciences.

[51]  M. Sebaihia,et al.  Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel β‐lactam resistance mechanism , 1997, Molecular microbiology.

[52]  L. Rothfield,et al.  A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. , 1991, The EMBO journal.

[53]  W. Goebel,et al.  The gene slyA of Salmonella typhimurium is required for destruction of M cells and intracellular survival but not for invasion or colonization of the murine small intestine , 1996, Infection and immunity.

[54]  Edward G. Ruby,et al.  Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ , 2000, Journal of bacteriology.

[55]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[56]  M. Pirhonen,et al.  Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). , 2000, Molecular plant-microbe interactions : MPMI.

[57]  A. Rosenthal,et al.  High‐resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234 , 1999, Molecular microbiology.

[58]  Y. Liu,et al.  Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp , 1995, Journal of bacteriology.

[59]  E. Ruby,et al.  Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri. , 1996, Gene.

[60]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Farrand,et al.  Genetic and Sequence Analysis of the pTiC58 trb Locus, Encoding a Mating-Pair Formation System Related to Members of the Type IV Secretion Family , 1998, Journal of bacteriology.

[62]  C. Harwood,et al.  Induction of type 2 Shiga toxin synthesis in Escherichia coli 0157 by 4-quinolones , 1999, The Lancet.

[63]  G. Salmond,et al.  Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[64]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[65]  D. Wood,et al.  Two-Component Transcriptional Regulation of N -Acyl-Homoserine Lactone Production inPseudomonas aureofaciens , 1999, Applied and Environmental Microbiology.

[66]  M. Cámara,et al.  The LuxM Homologue VanM from Vibrio anguillarumDirects the Synthesis of N-(3-Hydroxyhexanoyl)homoserine Lactone and N-Hexanoylhomoserine Lactone , 2001, Journal of bacteriology.

[67]  G. Geesey,et al.  Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture , 1995, Applied and environmental microbiology.

[68]  British Biofilm Club. Meeting,et al.  Biofilms : the good, the bad and the ugly : contributions made at the Fourth Meeting of the British Biofilm Club held at Gregynog Hall, Powys 18-20 September, 1999 , 1999 .

[69]  S. Farrand Conjugal Plasmids and Their Transfer , 1998 .

[70]  S. Farrand,et al.  Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer , 1995, Journal of bacteriology.

[71]  T. Baldwin,et al.  Transcriptional regulation of bioluminesence genes from Vibrio fischeri , 1995, Molecular microbiology.

[72]  E. Greenberg,et al.  A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[73]  P. Rather,et al.  Escherichia coli genes regulated by cell-to-cell signaling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Dunlap,et al.  Requirement for autoinducer in transcriptional negative autoregulation of the Vibrio fischeri luxR gene in Escherichia coli , 1989, Journal of bacteriology.

[75]  S. Rice,et al.  Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria , 1999, Molecular microbiology.

[76]  John W. Beaber,et al.  Analogs of the Autoinducer 3-Oxooctanoyl-Homoserine Lactone Strongly Inhibit Activity of the TraR Protein ofAgrobacterium tumefaciens , 1998, Journal of bacteriology.

[77]  A. Neely,et al.  Pyoverdin is essential for virulence of Pseudomonas aeruginosa , 1996, Infection and immunity.

[78]  Y. Liu,et al.  hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. , 2000, Environmental microbiology.

[79]  E. Greenberg,et al.  Quorum Sensing in Burkholderia cepacia: Identification of the LuxRI Homologs CepRI , 1999, Journal of bacteriology.

[80]  G. Salmond,et al.  The bacterial ‘enigma’: cracking the code of cell–cell communication , 1995, Molecular microbiology.

[81]  T. Baldwin,et al.  The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene , 1991, Journal of bacteriology.

[82]  D. Hassett,et al.  Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase , 1992, Infection and immunity.

[83]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[84]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[85]  I. Rapoport,et al.  [The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini]. , 1967, Doklady Akademii nauk SSSR.

[86]  D. Coplin,et al.  A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Dunlap,et al.  Acylhomoserine Lactone Synthase Activity of the Vibrio fischeri AinS Protein , 1999, Journal of bacteriology.

[88]  C. Reimmann,et al.  The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N‐butyryl‐homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase , 1997, Molecular microbiology.

[89]  Yang Liu,et al.  Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites , 1998, Molecular microbiology.

[90]  E. Greenberg,et al.  Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain , 1995, Journal of bacteriology.

[91]  M. Cámara,et al.  The Pseudomonas aeruginosa quorum‐sensing signal molecule, N‐(3‐oxododecanoyl)‐L‐homoserine lactone, inhibits porcine arterial smooth muscle contraction , 1999, British journal of pharmacology.

[92]  R. Blosser,et al.  Extraction of violacein from Chromobacterium violaceum provides a new quantitative bioassay for N-acyl homoserine lactone autoinducers. , 2000, Journal of microbiological methods.

[93]  G. Salmond,et al.  The hexY genes of Erwinia carotovora ssp. carotovora and ssp. atroseptica encode novel proteins that regulate virulence and motility co-ordinately. , 1999, Environmental microbiology.

[94]  E. Greenberg,et al.  Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase , 1997, Journal of bacteriology.

[95]  F. Wisniewski-Dyé,et al.  Analysis of Quorum-Sensing-Dependent Control of Rhizosphere-Expressed (rhi) Genes in Rhizobium leguminosarum bv. viciae , 1999, Journal of bacteriology.

[96]  S. Atkinson,et al.  A hierarchical quorum‐sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping , 1999, Molecular microbiology.

[97]  S. Farrand,et al.  Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84 , 1997, Journal of bacteriology.

[98]  Stephen K. Farrand,et al.  Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction , 1993, Nature.

[99]  B. Bassler,et al.  Sequence and Function of LuxU: a Two-Component Phosphorelay Protein That Regulates Quorum Sensing inVibrio harveyi , 1999, Journal of bacteriology.

[100]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[101]  S. Kjelleberg,et al.  Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling , 1996, Journal of bacteriology.

[102]  J. Loper,et al.  EcbI and EcbR: homologs of LuxI and LuxR affecting antibiotic and exoenzyme production by Erwinia carotovora subsp. betavasculorum. , 1997, Canadian journal of microbiology.

[103]  P. Williams,et al.  Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. , 1999, FEMS microbiology letters.

[104]  T. Baldwin,et al.  Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. , 1992, The Journal of biological chemistry.

[105]  C. Fuqua,et al.  Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes , 1996, Journal of bacteriology.

[106]  G. Strobel,et al.  Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[107]  M K Winson,et al.  Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules , 1997, Journal of bacteriology.

[108]  G. Salmond,et al.  A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a LuxR:Luxl superfamily in enteric bacteria , 1993, Molecular microbiology.

[109]  G. Salmond,et al.  A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. , 1992, Gene.

[110]  E. P. Greenberg,et al.  Conversion of the Vibrio fischeriTranscriptional Activator, LuxR, to a Repressor , 2000, Journal of bacteriology.

[111]  P. Williams Role of the cell envelope in bacterial adaptation to growth in vivo in infections. , 1988, Biochimie.

[112]  S. Farrand,et al.  The Replicator of the Nopaline-Type Ti Plasmid pTiC58 Is a Member of the repABC Family and Is Influenced by the TraR-Dependent Quorum-Sensing Regulatory System , 2000, Journal of bacteriology.

[113]  G. Salmond,et al.  Integration of the quorum‐sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi , 1998, Molecular microbiology.

[114]  G. Hartman,et al.  Quorum sensing: potential means of treating gram-negative infections? , 1998, The Lancet.

[115]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[116]  L. Madi,et al.  The RsmA- mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpNEcc and elicit a hypersensitive reaction-like response in tobacco leaves. , 1996, Molecular plant-microbe interactions : MPMI.

[117]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[118]  P. Dunlap,et al.  Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri , 1994, Journal of bacteriology.

[119]  M. Sebaihia,et al.  Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. , 1995, Microbiology.

[120]  D. Wheeler,et al.  The Pseudomonas aeruginosaQuorum-Sensing Signal MoleculeN-(3-Oxododecanoyl)-l-Homoserine Lactone Has Immunomodulatory Activity , 1998, Infection and Immunity.

[121]  M. Schell,et al.  An RpoS (σS) homologue regulates acylhomoserine lactone‐dependent autoinduction in Ralstonia solanacearum , 1998, Molecular microbiology.

[122]  P. Miller,et al.  Analysis of the genetic requirements for inducible multiple-antibiotic resistance associated with the mar locus in Escherichia coli , 1994, Journal of bacteriology.

[123]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[124]  M Welch,et al.  N‐acyl homoserine lactone binding to the CarR receptor determines quorum‐sensing specificity in Erwinia , 2000, The EMBO journal.

[125]  J. Roth,et al.  Virulence Mechanisms of Bacterial Pathogens , 1995 .

[126]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Kijne,et al.  Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-L-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors , 1996, Journal of bacteriology.

[128]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[129]  J. M. Meyer,et al.  Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. , 1998, FEMS microbiology letters.

[130]  M. Akrim,et al.  Regulation of the xcp secretion pathway by multiple quorum‐sensing modulons in Pseudomonas aeruginosa , 1997, Molecular microbiology.

[131]  M. Sebaihia,et al.  Erwinia carotovora has two KdgR-like proteins belonging to the IciR family of transcriptional regulators: identification and characterization of the RexZ activator and the KdgR repressor of pathogenesis. , 1999, Microbiology.

[132]  K. Visick,et al.  An Exclusive Contract: Specificity in the Vibrio fischeri-Euprymna scolopes Partnership , 2000, Journal of bacteriology.

[133]  S. Diggle,et al.  The Pseudomonas aeruginosa Lectins PA-IL and PA-IIL Are Controlled by Quorum Sensing and by RpoS , 2000, Journal of bacteriology.

[134]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs , 1996, Journal of bacteriology.

[135]  M. Schell,et al.  A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester , 1997, Journal of bacteriology.

[136]  A. Ishihama,et al.  RpoS (Sigma-S) Controls Expression of rsmA, a Global Regulator of Secondary Metabolites, Harpin, and Extracellular Proteins in Erwinia carotovora , 1998, Journal of bacteriology.

[137]  E. Greenberg,et al.  Intragenic suppression of a luxR mutation: Characterization of an autoinducer-independent LuxR , 1995 .

[138]  W. Goebel,et al.  A cytolysin encoded by Salmonella is required for survival within macrophages. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[139]  Roger S Smith,et al.  Roles of Pseudomonas aeruginosa las andrhl Quorum-Sensing Systems in Control of Twitching Motility , 1999, Journal of bacteriology.

[140]  D. Pritchard,et al.  Quorum sensing and the population-dependent control of virulence. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[141]  John A. Griswold,et al.  Contribution of Quorum Sensing to the Virulence ofPseudomonas aeruginosa in Burn Wound Infections , 1999, Infection and Immunity.

[142]  E. Ruby,et al.  The Periplasmic, Group III Catalase of Vibrio fischeriIs Required for Normal Symbiotic Competence and Is Induced Both by Oxidative Stress and by Approach to Stationary Phase , 1998, Journal of bacteriology.

[143]  D. Morrison,et al.  An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Yang Liu,et al.  rsmC of the Soft-Rotting Bacterium Erwinia carotovora subsp. carotovora Negatively Controls Extracellular Enzyme and HarpinEcc Production and Virulence by Modulating Levels of Regulatory RNA (rsmB) and RNA-Binding Protein (RsmA) , 1999, Journal of bacteriology.

[145]  B. Sikyta,et al.  Overproduction of microbial products , 1982 .

[146]  P. Reeves,et al.  The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. , 1993, The EMBO journal.

[147]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[148]  M. R. Brown,et al.  Influence of substrate limitation and growth phase on sensitivity to antimicrobial agents. , 1985, The Journal of antimicrobial chemotherapy.

[149]  P. Seed,et al.  Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[150]  S. Molin,et al.  N -Acyl-l-Homoserine Lactone Autoinducers Control Production of an Extracellular Lipopeptide Biosurfactant Required for Swarming Motility of Serratia liquefaciens MG1 , 1998 .

[151]  P. Dunlap,et al.  Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit , 1988, Journal of bacteriology.

[152]  Y. Liu,et al.  Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone , 1995, Applied and environmental microbiology.

[153]  Kun-Soo Kim,et al.  Octopine‐type Ti plasmids code for a mannopine‐inducible dominant‐negative allele of traR, the quorum‐sensing activator that regulates Ti plasmid conjugal transfer , 1998, Molecular microbiology.

[154]  B. Bassler,et al.  Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway , 1994, Molecular microbiology.

[155]  M. Surette,et al.  Regulation of autoinducer production in Salmonella typhimurium , 1999, Molecular microbiology.

[156]  J. Rosner,et al.  Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[157]  L. Pratt,et al.  The response regulator SprE controls the stability of RpoS. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[158]  Yinping Qin,et al.  The Antiactivator TraM Interferes with the Autoinducer-dependent Binding of TraR to DNA by Interacting with the C-terminal Region of the Quorum-sensing Activator* , 2000, The Journal of Biological Chemistry.

[159]  E. Ruby,et al.  Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs , 1995, Journal of bacteriology.

[160]  N. Thomson,et al.  Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control , 2000, Molecular microbiology.

[161]  P. Revell,et al.  A chromosomally encoded regulator is required for expression of the Yersinia enterocolitica inv gene and for virulence , 2000, Molecular microbiology.

[162]  C. Fuqua,et al.  Biofilms on Indwelling Urethral Catheters Produce Quorum-Sensing Signal Molecules In Situ and In Vitro , 1998, Applied and Environmental Microbiology.

[163]  B. Bassler,et al.  A genetic analysis of the function of LuxO, a two‐component response regulator involved in quorum sensing in Vibrio harveyi , 1999, Molecular microbiology.

[164]  G. Salmond,et al.  Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N‐acyl‐homoserine lactone signal molecules , 1998, Molecular microbiology.

[165]  A. Tomasz,et al.  On the nature of the pneumococcal activator substance. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[166]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[167]  M. Lyte,et al.  Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157:H7. , 1996, FEMS microbiology letters.

[168]  P. Murphy,et al.  Opines and Opine-Like Molecules Involved in Plant-Rhizobiaceae Interactions , 1998 .

[169]  N. Thomson,et al.  The Rap and Hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens , 1997, Molecular microbiology.

[170]  Jun Zhu,et al.  The Bases of Crown Gall Tumorigenesis , 2000, Journal of bacteriology.

[171]  P. Dunlap,et al.  LuxR- and Acyl-Homoserine-Lactone-Controlled Non-luxGenes Define a Quorum-Sensing Regulon in Vibrio fischeri , 2000, Journal of bacteriology.

[172]  B. Iglewski,et al.  Cell-to-cell signaling and Pseudomonas aeruginosa infections. , 1998, Emerging infectious diseases.

[173]  Gary M. Dunny,et al.  Cell-cell signaling in bacteria , 1999 .

[174]  M. Schell,et al.  Joint Transcriptional Control of xpsR, the Unusual Signal Integrator of the Ralstonia solanacearum Virulence Gene Regulatory Network, by a Response Regulator and a LysR-Type Transcriptional Activator , 1998, Journal of bacteriology.

[175]  B. Iglewski,et al.  Functional analysis of the Pseudomonas aeruginosa autoinducer PAI , 1996, Journal of bacteriology.

[176]  S. Libby,et al.  Differential Regulation of Enteric and Systemic Salmonellosis by slyA , 1999, Infection and Immunity.

[177]  D. Hassett,et al.  Effect of rpoS Mutation on the Stress Response and Expression of Virulence Factors in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[178]  A. Prince,et al.  Pseudomonas aeruginosa Cell-to-Cell Signaling Is Required for Virulence in a Model of Acute Pulmonary Infection , 2000, Infection and Immunity.

[179]  S. Long,et al.  Bacteroid formation in the Rhizobium-legume symbiosis. , 1999, Current opinion in microbiology.

[180]  Y. Liu,et al.  Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. , 1993, Molecular plant-microbe interactions : MPMI.

[181]  F. Ausubel,et al.  Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[182]  S. Farrand,et al.  A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer , 1995, Journal of bacteriology.

[183]  J. W. Hastings,et al.  Biochemistry and physiology of bioluminescent bacteria. , 1985, Advances in microbial physiology.

[184]  M. Pirhonen,et al.  A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. , 1993, The EMBO journal.

[185]  D. E. Bradley A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. , 1980, Canadian journal of microbiology.

[186]  G. Salmond,et al.  Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. , 1993, The Journal of antibiotics.

[187]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[188]  R. McLean,et al.  The development of bacterial biofilms on indwelling urethral catheters , 1999, World Journal of Urology.

[189]  V. Kapatral,et al.  Temperature‐dependent regulation of Yersinia enterocolitica Class III flagellar genes , 1996, Molecular microbiology.

[190]  J. Michiels,et al.  luxI- and luxR-Homologous Genes of Rhizobium etli CNPAF512 Contribute to Synthesis of Autoinducer Molecules and Nodulation of Phaseolus vulgaris , 1998, Journal of bacteriology.

[191]  P. Dunlap,et al.  AinS and a new family of autoinducer synthesis proteins , 1995, Journal of bacteriology.

[192]  E. Greenberg,et al.  Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[193]  A. Kerr,et al.  A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens , 1991, Journal of bacteriology.

[194]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[195]  G. Strobel,et al.  Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centaurea maculosa) , 1996 .

[196]  T. Romeo,et al.  Phylogenetic distribution of the global regulatory gene csrA among eubacteria. , 1996, Gene.

[197]  J. García‐Lara,et al.  An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli , 1996, Journal of bacteriology.

[198]  L. Emödy,et al.  The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. , 1994, The Journal of infectious diseases.

[199]  J. Downie,et al.  Plant responses to nodulation factors. , 1999, Current opinion in plant biology.

[200]  S. Farrand,et al.  Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. , 1998, Molecular plant-microbe interactions : MPMI.

[201]  R. Marits,et al.  Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. , 1999, Microbiology.

[202]  P. Rather,et al.  Providencia stuartii Genes Activated by Cell-to-Cell Signaling and Identification of a Gene Required for Production or Activity of an Extracellular Factor , 1999, Journal of bacteriology.

[203]  G. Salmond,et al.  In vitro biosynthesis of the Pseudomonas aeruginosa quorum‐sensing signal molecule N‐butanoyl‐L‐homoserine lactone , 1998, Molecular microbiology.

[204]  Z Lewandowski,et al.  Effect of Catalase on Hydrogen Peroxide Penetration into Pseudomonas aeruginosa Biofilms , 2000, Applied and Environmental Microbiology.

[205]  J. Downie,et al.  Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae , 1992, Journal of bacteriology.

[206]  Yang Liu,et al.  kdgREcc Negatively Regulates Genes for Pectinases, Cellulase, Protease, HarpinEcc, and a Global RNA Regulator in Erwinia carotovora subsp.carotovora , 1999, Journal of bacteriology.

[207]  W. Broughton,et al.  Molecular Basis of Symbiotic Promiscuity , 2000, Microbiology and Molecular Biology Reviews.

[208]  K. Nordström,et al.  Quorum-sensing acts at initiation of chromosomal replication in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[209]  J. Schell,et al.  Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants , 1989, Cell.

[210]  G. Salmond,et al.  N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. , 1992, The Biochemical journal.

[211]  V. Sperandio,et al.  Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[212]  J. Bennetzen,et al.  Identification of a pathogenicity locus, rpfA, in Erwinia carotovora subsp. carotovora that encodes a two-component sensor-regulator protein , 1997 .

[213]  M. Cámara,et al.  Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone , 1997, Journal of bacteriology.

[214]  J H Lamb,et al.  Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. , 1997, Microbiology.

[215]  S. Swift,et al.  Quorum Sensing-Dependent Regulation and Blockade of Exoprotease Production in Aeromonas hydrophila , 1999, Infection and Immunity.

[216]  E. Greenberg,et al.  Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes , 1996, Journal of bacteriology.

[217]  S. C. Winans,et al.  Activity of the quorum‐sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR‐like protein , 1998, Molecular microbiology.

[218]  S. Farrand,et al.  Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium , 1999, Molecular microbiology.

[219]  T. Silhavy,et al.  The LysR Homolog LrhA Promotes RpoS Degradation by Modulating Activity of the Response Regulator SprE , 1999, Journal of bacteriology.

[220]  B. Iglewski,et al.  Starvation Selection Restores Elastase and Rhamnolipid Production in a Pseudomonas aeruginosaQuorum-Sensing Mutant , 1998, Infection and Immunity.

[221]  B. Bassler,et al.  A genetic analysis of the functions of LuxN: a two‐component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi , 2000, Molecular microbiology.

[222]  S. Bentley,et al.  The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants , 1998, Molecular microbiology.

[223]  F. Ausubel,et al.  Positive Correlation between Virulence ofPseudomonas aeruginosa Mutants in Mice and Insects , 2000, Journal of bacteriology.

[224]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[225]  S. Ulitzur,et al.  Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins , 1992, Journal of bacteriology.

[226]  K. Rinehart,et al.  Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[227]  W. Fuqua,et al.  A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite , 1994, Journal of bacteriology.

[228]  Y. Liu,et al.  Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. , 1996, Microbiology.

[229]  John E. Cronan,et al.  In Vivo Evidence that S-Adenosylmethionine and Fatty Acid Synthesis Intermediates Are the Substrates for the LuxI Family of Autoinducer Synthases , 1998, Journal of bacteriology.

[230]  G. Cornelis,et al.  Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica , 1992, Molecular microbiology.

[231]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[232]  M. Sebaihia,et al.  Analysis of bacterial carbapenem antibiotic production genes reveals a novel β‐lactam biosynthesis pathway , 1996, Molecular microbiology.

[233]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[234]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis , 1996, Journal of bacteriology.

[235]  Lian-Hui Zhang,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora , 2000 .

[236]  N. A. Whitehead,et al.  Quorum-sensing in Gram-negative bacteria. , 2001, FEMS microbiology reviews.

[237]  S. Farrand,et al.  Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes , 1999, Molecular microbiology.

[238]  B. Witholt,et al.  Pseudomonas: molecular biology and biotechnology. , 1992 .

[239]  D. Pritchard,et al.  Quorum sensing: a novel target for anti-infective therapy. , 1998, The Journal of antimicrobial chemotherapy.

[240]  J. Downie,et al.  Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum , 1984, Journal of bacteriology.

[241]  Margret I. Moré,et al.  Enzymatic Synthesis of a Quorum-Sensing Autoinducer Through Use of Defined Substrates , 1996, Science.

[242]  G. Hayman,et al.  Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[243]  E. Greenberg,et al.  Analysis of random and site‐directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase , 1997, Molecular microbiology.

[244]  R. England Microbial Signalling and Communication , 1999 .

[245]  M. Teplitski,et al.  Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[246]  N. Sabnis,et al.  Pleiotropic Regulation of Central Carbohydrate Metabolism in Escherichia coli via the Gene csrA(*) , 1995, The Journal of Biological Chemistry.

[247]  A. Prince,et al.  Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection , 1996, Infection and immunity.

[248]  D. Giedroc,et al.  The RNA Molecule CsrB Binds to the Global Regulatory Protein CsrA and Antagonizes Its Activity in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[249]  S. Molin,et al.  Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon , 1996, Journal of bacteriology.

[250]  C. Fuqua,et al.  Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene , 1995, Journal of bacteriology.

[251]  E. Greenberg,et al.  Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[252]  I. Swift,et al.  New signal molecules on the quorum-sensing block. , 2000, Trends in microbiology.

[253]  E. Greenberg,et al.  Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein , 1992, Journal of bacteriology.

[254]  F. Wisniewski-Dyé,et al.  The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum‐sensing loci , 2000, Molecular microbiology.

[255]  P. Stewart,et al.  Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide , 1999, Molecular microbiology.

[256]  G. Storz,et al.  The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. , 1996, The EMBO journal.