Acceleration of convergence of general linear sequences by the Shanks transformation

The Shanks transformation is a powerful nonlinear extrapolation method that is used to accelerate the convergence of slowly converging, and even diverging, sequences {An}. It generates a two-dimensional array of approximations $${A^{(j)}_n}$$ to the limit or anti-limit of {An} defined as solutions of the linear systems$$A_l=A^{(j)}_n +\sum^{n}_{k=1}\bar{\beta}_k(\Delta A_{l+k-1}),\ \ j\leq l\leq j+n,$$where $${\bar{\beta}_{k}}$$ are additional unknowns. In this work, we study the convergence and stability properties of $${A^{(j)}_n}$$ , as j → ∞ with n fixed, derived from general linear sequences {An}, where $${{A_n \sim A+\sum^{m}_{k=1}\zeta_k^n\sum^\infty_{i=0} \beta_{ki}n^{\gamma_k-i}}}$$ as n → ∞, where ζk ≠ 1 are distinct and |ζ1| = ... = |ζm| = θ, and γk ≠ 0, 1, 2, . . .. Here A is the limit or the anti-limit of {An}. Such sequences arise, for example, as partial sums of Fourier series of functions that have finite jump discontinuities and/or algebraic branch singularities. We show that definitive results are obtained with those values of n for which the integer programming problems$$\begin{array}{ll}{\quad\quad\quad\quad\max\limits_{s_1,\ldots,s_m}\sum\limits_{k=1}^{m}\left[(\Re\gamma_k)s_k-s_k(s_k-1)\right],}\\ {{\rm subject\,to}\,\, s_1\geq0,\ldots,s_m\geq0\quad{\rm and}\quad \sum\limits_{k=1}^{m} s_k = n,}\end{array}$$have unique (integer) solutions for s1, . . . , sm. A special case of our convergence result concerns the situation in which $${{\Re\gamma_1=\cdots=\Re\gamma_m=\alpha}}$$ and n = mν with ν = 1, 2, . . . , for which the integer programming problems above have unique solutions, and it reads $${A^{(j)}_n-A=O(\theta^j\,j^{\alpha-2\nu})}$$ as j → ∞. When compared with Aj − A = O(θj jα) as j → ∞, this result shows that the Shanks transformation is a true convergence acceleration method for the sequences considered. In addition, we show that it is stable for the case being studied, and we also quantify its stability properties. The results of this work are the first ones pertaining to the Shanks transformation on general linear sequences with m > 1.

[1]  D. Lubinsky Padé tables of entire functions of very slow and smooth growth , 1985 .

[2]  G. A. Baker Essentials of Padé approximants , 1975 .

[3]  P. Wynn,et al.  On a device for computing the _{}(_{}) tranformation , 1956 .

[4]  Claude Brezinski,et al.  Extrapolation Algorithms for Filtering Series of Functions, and Treating the Gibbs Phenomenon , 2004, Numerical Algorithms.

[5]  Avram Sidi,et al.  Extension and Completion of Wynn's Theory on Convergence of Columns of the Epsilon Table , 1996 .

[6]  David A. Smith,et al.  Acceleration of convergence of vector sequences , 1986 .

[7]  Tchébichef Sur les fractions continues algébriques. , 1865 .

[8]  Avram Sidi,et al.  A simple approach to asymptotic expansions for Fourier integrals of singular functions , 2010, Appl. Math. Comput..

[9]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[10]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[11]  Avram Sidi,et al.  Asymptotic analysis of a generalized Richardson extrapolation process on linear sequences , 2009, Math. Comput..

[12]  F. Grinstein,et al.  Recent results relevant to the evaluation of infinite series , 1983 .

[13]  A. Ralston A first course in numerical analysis , 1965 .

[14]  Avram Sidi,et al.  An algorithm for a generalization of the Richardson extrapolation process , 1987 .

[15]  P. Wynn,et al.  On the Convergence and Stability of the Epsilon Algorithm , 1966 .

[16]  H. L. Gray,et al.  Higher Order G-Transformation , 1971 .

[17]  D. Lubinsky Padé tables of entire functions of very slow and smooth growth, II , 1985 .

[18]  A. Sidi On a generalization of the Richardson extrapolation process , 1990 .

[19]  Avram Sidi,et al.  Quantitative and constructive aspects of the generalized Koenig's and de Montessus's theorems for Pade´ approximants , 1990 .

[20]  M. A. Wolfe A first course in numerical analysis , 1972 .

[21]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[22]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[23]  Avram Sidi Asymptotic expansions of Legendre series coefficients for functions with endpoint singularities , 2009, Asymptot. Anal..

[24]  Ana C. Matos,et al.  Reduction of the Gibbs phenomenon for smooth functions with jumps by the ε-algorithm , 2008 .

[25]  A. Sidi Further results on convergence and stability of a generalization of the Richardson extrapolation process , 1996 .

[26]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[27]  C. Brezinski,et al.  Accélération de la convergence en analyse numérique , 1977 .

[28]  H. Rutishauser Der Quotienten-Differenzen-Algorithmus , 1954 .

[29]  David A. Smith,et al.  Numerical Comparisons of Nonlinear Convergence Accelerators , 1982 .

[30]  P. Wynn,et al.  TRANSFORMATIONS TO ACCELERATE THE CONVERGENCE OF FOURIER SERIES. , 1966 .

[31]  David Levin,et al.  Two New Classes of Nonlinear Transformations for Accelerating the Convergence of Infinite Integrals and Series , 1981 .

[32]  Avram Sidi,et al.  Asymptotic expansions of Legendre series coefficients for functions with interior and endpoint singularities , 2010, Math. Comput..

[33]  H. R. Pitt Divergent Series , 1951, Nature.

[34]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[35]  J. Karlsson,et al.  RATIONAL APPROXIMATION BY AN INTERPOLATION PROCEDURE IN SEVERAL VARIABLES , 1977 .

[36]  Avram Sidi,et al.  The Richardson Extrapolation Process with a Harmonic Sequence of Collocation Points , 2000, SIAM J. Numer. Anal..

[37]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[38]  Solution of an integer programming problem related to convergence of rows of Pade´ approximants , 1991 .

[39]  B. Burrows,et al.  Lower bounds for quartic anharmonic and double‐well potentials , 1993 .

[40]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[41]  Y. Simon,et al.  The ε-algorithm allows to detect Dirac delta functions , 2004 .

[42]  Jacek Gilewicz,et al.  Approximants de Padé , 1978 .

[43]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[44]  Avram Sidi,et al.  Practical Extrapolation Methods - Theory and Applications , 2003, Cambridge monographs on applied and computational mathematics.

[45]  Avram Sidi,et al.  Survey of numerical stability issues in convergence acceleration , 2010 .

[46]  Edward B. Saff,et al.  An extension of Montessus de Ballore's theorem on the convergence of interpolating rational functions , 1972 .

[47]  Gerry Leversha,et al.  Introduction to numerical analysis (3rd edn), by J. Stoer and R. Bulirsch. Pp. 744. £49. 2002. ISBN 0 387 95452 X (Springer-Verlag). , 2004, The Mathematical Gazette.