FEDERAL RESERVE BANK OF NEW YORK

This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (Econometrica 57, 1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels, and the standard errors are “robust” in the sense that they accommodate (but do not require) bandwidths that are smaller than those for which conventional standard errors are valid. Moreover, the results of a Monte Carlo experiment suggest that the finite sample coverage rates of confidence intervals constructed using the standard errors developed in this papercoincide (approximately) with the nominal coverage rates across a nontrivial range of bandwidths.

[1]  O. Linton,et al.  Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators , 2001 .

[2]  Thomas M. Stoker,et al.  Optimal bandwidth choice for density-weighted averages , 1996 .

[3]  AN IMPROVED FORMULA FOR THE ASYMPTOTIC VARIANCE OF SPECTRUM ESTIMATES , 1970 .

[4]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[5]  W. Eddy Optimum Kernel Estimators of the Mode , 1980 .

[6]  Nicholas M. Kiefer,et al.  HETEROSKEDASTICITY-AUTOCORRELATION ROBUST STANDARD ERRORS USING THE BARTLETT KERNEL WITHOUT TRUNCATION , 2002 .

[7]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[8]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[9]  Richard K. Crump,et al.  Robust Data-Driven Inference for Density-Weighted Average Derivatives , 2009 .

[10]  Thomas A. Severini,et al.  A simpli"ed approach to computing e$ciency bounds in semiparametric models , 2001 .

[11]  O. Linton,et al.  Identification and Inference for Econometric Models: Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators , 2005 .

[12]  A. Juditsky,et al.  Direct estimation of the index coefficient in a single-index model , 2001 .

[13]  Y. Nishiyama The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives , 2004 .

[14]  W. Newey,et al.  Kernel Estimation of Partial Means and a General Variance Estimator , 1994, Econometric Theory.

[15]  Yoshihiko Nishiyama,et al.  Edgeworth expansions for semiparametric averaged derivatives , 2000 .

[16]  Whitney K. Newey,et al.  Efficiency of weighted average derivative estimators and index models , 1993 .

[17]  Bing-Yi Jing,et al.  Edgeworth expansion for U-statistics under minimal conditions , 2003 .

[18]  Peter F. de Jong,et al.  A central limit theorem for generalized quadratic forms , 1987 .

[19]  Nicholas M. Kiefer,et al.  A NEW ASYMPTOTIC THEORY FOR HETEROSKEDASTICITY-AUTOCORRELATION ROBUST TESTS , 2005, Econometric Theory.

[20]  A Central Limit Theorem for the Sum of Generalized Linear and Quadratic Forms , 1999 .

[21]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[22]  T. Severini,et al.  A simplified approach to computing efficiency bounds in semiparametric models , 2001 .

[23]  Thomas M. Stoker Consistent estimation of scaled coefficients , 2011 .

[24]  S. Janson,et al.  Limit Theorems for a Triangular Scheme of $U$-Statistics with Applications to Inter-Point Distances , 1986 .

[25]  P. Robinson ROOT-N-CONSISTENT SEMIPARAMETRIC REGRESSION , 1988 .

[26]  Bo E. Honoré,et al.  Pairwise Difference Estimation with Nonparametric Control Variables , 2007 .

[27]  Yoshihiko Nishiyama,et al.  Studentization in Edgworth Expansions for Estimates of Semiparametric Index Models - (Now Published in C Hsiao, K Morimune and J Powell (Eds): Nonlinear Statistical Modeling (Festschrift for Takeshi Amemiya), (Cambridge University Press, 2001), Pp.197-240.) , 1999 .

[28]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Regression Hypotheses , 2000 .

[29]  J. Robins,et al.  Twicing Kernels and a Small Bias Property of Semiparametric Estimators , 2004 .

[30]  Nicholas M. Kiefer,et al.  HETEROSKEDASTICITY-AUTOCORRELATION ROBUST TESTING USING BANDWIDTH EQUAL TO SAMPLE SIZE , 2002, Econometric Theory.

[31]  P. Robinson The Normal Approximation for Semiparametric Averaged Derivatives , 1995 .

[32]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .