Travel analytics: Understanding how destination choice and business clusters are connected based on social media data ☆

[1]  Christopher M. Danforth,et al.  The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place , 2013, PloS one.

[2]  O. Järv,et al.  Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records , 2014 .

[3]  Jie Yin,et al.  Using Social Media to Enhance Emergency Situation Awareness , 2012, IEEE Intelligent Systems.

[4]  Bruno Gonçalves,et al.  Crowdsourcing Dialect Characterization through Twitter , 2014, PloS one.

[5]  J. Granjeiro,et al.  Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations , 2014, PloS one.

[6]  Norman M. Sadeh,et al.  The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City , 2012, ICWSM.

[7]  M. Batty The Size, Scale, and Shape of Cities , 2008, Science.

[8]  Satish V. Ukkusuri,et al.  Urban activity pattern classification using topic models from online geo-location data , 2014 .

[9]  M. Porter Clusters and the new economics of competition. , 1998, Harvard business review.

[10]  Joseph L. Schofer,et al.  Role of Social Media in Communicating Transit Disruptions , 2014 .

[11]  Stanley Lieberson,et al.  Measuring Population Diversity , 1969 .

[12]  Wenwen Li,et al.  Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US , 2014 .

[13]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[14]  M. Barthelemy,et al.  From mobile phone data to the spatial structure of cities , 2014, Scientific Reports.

[15]  Yu Liu,et al.  Pervasive location acquisition technologies: Opportunities and challenges for geospatial studies , 2012, Comput. Environ. Urban Syst..

[16]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[17]  Satish V. Ukkusuri,et al.  Location Contexts of User Check-Ins to Model Urban Geo Life-Style Patterns , 2015, PloS one.

[18]  Carlo Ratti,et al.  Understanding individual mobility patterns from urban sensing data: A mobile phone trace example , 2013 .

[19]  Mizuki Morita,et al.  Twitter Catches The Flu: Detecting Influenza Epidemics using Twitter , 2011, EMNLP.

[20]  Satish V. Ukkusuri,et al.  Use of Social Media Data to Explore Crisis Informatics , 2014 .

[21]  Yuri Queiroz Abreu Torres,et al.  Digital Narratives: Mapping Contemporary Use of Urban Open Spaces through Geo-social Data , 2014 .

[22]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[23]  Lan Mu,et al.  GIS analysis of depression among Twitter users , 2015 .

[24]  David M Levinson,et al.  Axis of travel: Modeling non-work destination choice with GPS data , 2015 .

[25]  Lun Wu,et al.  Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data , 2014, PloS one.

[26]  Satish V. Ukkusuri,et al.  Understanding urban human activity and mobility patterns using large-scale location-based data from online social media , 2013, UrbComp '13.

[27]  Megha Agrawal,et al.  Characterizing Geographic Variation in Well-Being Using Tweets , 2013, ICWSM.

[28]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[29]  Catherine T. Lawson,et al.  A GPS/GIS method for travel mode detection in New York City , 2012, Comput. Environ. Urban Syst..

[30]  Carlo Ratti,et al.  Geo-located Twitter as proxy for global mobility patterns , 2013, Cartography and geographic information science.

[31]  Ben Shneiderman,et al.  Tweeting Apart: Applying Network Analysis to Detect Selective Exposure Clusters in Twitter , 2013 .

[32]  Alexei Pozdnoukhov,et al.  Temporal decomposition and semantic enrichment of mobility flows , 2013, LBSN '13.

[33]  Hamed Heydari,et al.  MabsBase: A Mycobacterium abscessus Genome and Annotation Database , 2013, PloS one.

[34]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[35]  Shaowen Wang,et al.  A scalable framework for spatiotemporal analysis of location-based social media data , 2014, Comput. Environ. Urban Syst..

[36]  Kristina Lerman,et al.  Geography of Emotion: Where in a City are People Happier? , 2015, WWW.

[37]  Norbert Brändle,et al.  Supporting large-scale travel surveys with smartphones – A practical approach , 2014 .

[38]  J. Wolf,et al.  Impact of Underreporting on Mileage and Travel Time Estimates: Results from Global Positioning System-Enhanced Household Travel Survey , 2003 .

[39]  Stephen Greaves,et al.  Household travel surveys: Where are we going? , 2007 .

[40]  Jiajun Liu,et al.  Understanding Human Mobility from Twitter , 2014, PloS one.

[41]  Jeffrey Nichols,et al.  Where Is This Tweet From? Inferring Home Locations of Twitter Users , 2012, ICWSM.

[42]  Satish V. Ukkusuri,et al.  A novel transit rider satisfaction metric: Rider sentiments measured from online social media data , 2013 .

[43]  Krzysztof Janowicz,et al.  Can Twitter data be used to validate travel demand models , 2015 .

[44]  Kyumin Lee,et al.  You are where you tweet: a content-based approach to geo-locating twitter users , 2010, CIKM.

[45]  Pere Colet,et al.  Tweets on the Road , 2014, PloS one.

[46]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[47]  Moshe Ben-Akiva,et al.  Future Mobility Survey , 2013 .

[48]  Vanessa Frías-Martínez,et al.  Spectral clustering for sensing urban land use using Twitter activity , 2014, Engineering applications of artificial intelligence.

[49]  Kees Maat,et al.  Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands , 2009 .

[50]  Enrique Frías-Martínez,et al.  Comparing and modelling land use organization in cities , 2015, Royal Society Open Science.

[51]  Cecilia Mascolo,et al.  An Empirical Study of Geographic User Activity Patterns in Foursquare , 2011, ICWSM.

[52]  Nirajan Shiwakoti,et al.  International Study of Current and Potential Social Media Applications in Unplanned Passenger Rail Disruptions , 2014 .