On the Structure of Modular Categories

For a braided tensor category C and a subcategory K there is a notion of a centralizer CC K, which is a full tensor subcategory of C. A pre‐modular tensor category is known to be modular in the sense of Turaev if and only if the center Z2C≡ CCC (not to be confused with the center Z1 of a tensor category, related to the quantum double) is trivial, that is, consists only of multiples of the tensor unit, and dimC ≠ 0. Here dimC=∑id(Xi)2 , the Xi being the simple objects.

[1]  P. Ghez,et al.  $W^\ast$-categories. , 1985 .

[2]  Bert Schroer,et al.  Superselection sectors with braid group statistics and exchange algebras , 1989 .

[3]  John E. Roberts,et al.  A new duality theory for compact groups , 1989 .

[4]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[5]  V. Pasquier,et al.  Quasihopf Algebras, Group Cohomology and Orbifold Models , 1990 .

[6]  河東 泰之,et al.  Quantum symmetry, differential geometry of finite graphs and classification of subfactors , 1991 .

[7]  V. Turaev Modular categories and 3-manifold invariants , 1992 .

[8]  D. Kazhdan,et al.  Tensor structures arising from affine Lie algebras. III , 1993 .

[9]  V. Turaev,et al.  QUANTUM INVARIANTS OF 3-MANIFOLDS ASSOCIATED WITH CLASSICAL SIMPLE LIE ALGEBRAS , 1993 .

[10]  D. Altschuler,et al.  Invariants of three-manifolds from finite group cohomology , 1993 .

[11]  Spherical Categories , 1993, hep-th/9310164.

[12]  T. Kerler On braided tensor categories , 1994, hep-th/9402018.

[13]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[14]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[15]  A. Pressley,et al.  A guide to quantum groups , 1994 .

[16]  A theory of dimension , 1996, funct-an/9604008.

[17]  Some properties of finite-dimensional semisimple Hopf algebras , 1997, q-alg/9712033.

[18]  Hans Wenzl,et al.  tensor categories from quantum groups , 1998 .

[19]  Michael Mueger Galois Theory for Braided Tensor Categories and the Modular Closure , 1998, math/9812040.

[20]  H. Wenzl C∗ TENSOR CATEGORIES FROM QUANTUM GROUPS , 1998 .

[21]  M. Izumi,et al.  The Structure of Sectors¶Associated with Longo–Rehren Inclusions¶I. General Theory , 2000 .

[22]  A canonical Tannaka duality for finite seimisimple tensor categories , 1999, math/9904073.

[23]  Jones–Witten Invariants for Nonsimply Connected Lie Groups and the Geometry of the Weyl Alcove , 1999, math/9905010.

[24]  Vladimir Turaev,et al.  Invariants of knots and 3-manifolds from quantum groupoids , 2000 .

[25]  M. Izumi The Structure of Sectors Associated with Longo-Rehren Inclusions II , 2001 .

[26]  Conformal field theory and Doplicher-Roberts reconstruction , 2000, math-ph/0008027.

[27]  A. Kirillov,et al.  Lectures on tensor categories and modular functors , 2000 .

[28]  高田 敏恵 書評 Turaev: Quantum Invariants of Knots and 3-Manifolds〔和文〕 , 2000 .

[29]  Modular categories of types B, C and D , 2000, math/0006227.

[30]  Multi-Interval Subfactors and Modularity¶of Representations in Conformal Field Theory , 1999, math/9903104.

[31]  Viktor Ostrik Module categories, weak Hopf algebras and modular invariants , 2001 .

[32]  From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[33]  Galois extensions of braided tensor categories and braided crossed G-categories , 2002, math/0209093.

[34]  From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories , 2001, math/0111204.

[35]  K. Rehren Braid Group Statistics and their Superselection Rules , 2022 .