Controlled Synthesis and Uniform Anchoring of Hollow CuxO Nanocubes on Carbon Nanofiber for Enhanced Se(S)-Se(S) Bond Activation.

In the present study, we fabricated hollow cubic CuxO nanoparticles (∼23 nm) incorporated with CNF (HC-CuxO/CNF) through controlled thermal oxidation of solid cubic Cu2O nanoparticles (∼21 nm) supported on carbon nanofibers (SC-Cu2O/CNF) under airflow, exploiting the nanoscale Kirkendall effect. These hollow CuxO nanocubes with increased surface areas exhibited outstanding catalytic activity for unsymmetrical chalcogenide synthesis under ligand-free conditions.

[1]  K. Park,et al.  Light-Harvesting Novel Hierarchical Porous Cu9S5-MnWO4 Hybrid Structures in Photocatalytic Oxidative Homocoupling of Alkynes and Amines. , 2022, ACS applied materials & interfaces.

[2]  H. Jeong,et al.  Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis , 2019, ACS Catalysis.

[3]  Hern Kim,et al.  Ionic liquid based Cu2S@C catalyst for effective coupling of diaryl diselenide with aryl halides under ligand-free conditions , 2018, Chemical Engineering Journal.

[4]  Guoqiang Wang,et al.  Evolution of a Cu2O Cube to a Hollow Truncated Octahedron and Their Photocatalytic and Electrocatalytic Activity , 2018, ACS Applied Nano Materials.

[5]  B. Movassagh,et al.  A Highly Efficient Copper-Catalyzed Synthesis of Unsymmetrical Diaryl- and Aryl Alkyl Chalcogenides from Aryl Iodides and Diorganyl Disulfides and Diselenides , 2015, Synlett.

[6]  K. Park,et al.  Copper Nanoparticle Catalyzed Formation of C–S Bonds through Activation of S–S and C–H Bonds: An Easy Route to Alkynyl Sulfides , 2015, Synthesis.

[7]  K. Park,et al.  Copper Nanoparticles Catalyzed Se(Te)Se(Te) Bond Activation: A Straightforward Route Towards Unsymmetrical Organochalcogenides from Boronic Acids , 2015 .

[8]  Michael H. Huang,et al.  Fabrication of Diverse Cu2O Nanoframes through Face-Selective Etching , 2013 .

[9]  M. Zachariah,et al.  Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators , 2013 .

[10]  Jingzhou Yin,et al.  Monodisperse CuO Hard and Hollow Nanospheres as Visible‐Light Photocatalysts , 2013 .

[11]  M. El-Sayed,et al.  Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones. , 2013, Accounts of chemical research.

[12]  F. Zhang,et al.  Hierarchically Porous CuO Hollow Spheres Fabricated via a One-Pot Template-Free Method for High-Performance Gas Sensors , 2012 .

[13]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[14]  K. Swapna,et al.  Magnetically Separable and Reusable Copper Ferrite Nanoparticles for Cross-Coupling of Aryl Halides with Diphenyl Diselenide , 2011 .

[15]  M. El-Sayed,et al.  Time dependence and signs of the shift of the surface plasmon resonance frequency in nanocages elucidate the nanocatalysis mechanism in hollow nanoparticles. , 2011, Nano letters.

[16]  Y. Tong,et al.  Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application. , 2011, Inorganic chemistry.

[17]  Defeng Zhao,et al.  CuS/Fe: a novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides , 2010 .

[18]  M. El-Sayed,et al.  Experimental evidence for the nanocage effect in catalysis with hollow nanoparticles. , 2010, Nano letters.

[19]  M. El-Sayed,et al.  Polystyrene Microspheres: Inactive Supporting Material for Recycling and Recovering Colloidal Nanocatalysts in Solution , 2010 .

[20]  L. Bai,et al.  Morphology Evolution of Cu2O from Octahedra to Hollow Structures , 2010 .

[21]  Benhur Godoi,et al.  Synthesis of organochalcogen propargyl aryl ethers and their application in the electrophilic cyclization reaction: an efficient preparation of 3-halo-4-chalcogen-2H-benzopyrans. , 2009, The Journal of organic chemistry.

[22]  H. Kwon,et al.  Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials , 2009 .

[23]  Shuyan Gao,et al.  Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-ion Batteries , 2008 .

[24]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[25]  Michael H. Huang,et al.  Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes , 2008, 2010 3rd International Nanoelectronics Conference (INEC).

[26]  L. Zhen,et al.  Aqueous Solution Synthesis of Cd(OH)2 Hollow Microspheres via Ostwald Ripening and Their Conversion to CdO Hollow Microspheres , 2008 .

[27]  M. Koketsu,et al.  Synthesis of 3-selena-1-dethiacephems and selenazepines via iodocyclization. , 2008, Organic letters.

[28]  L. Archer,et al.  A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles , 2008 .

[29]  Yong Wang,et al.  One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties , 2007 .

[30]  J. Angus,et al.  Selenofonsartan analogues: novel selenium-containing antihypertensive compounds , 2007 .

[31]  Xinghai Shen,et al.  Formation of solid and hollow cuprous oxide nanocubes in water-in-oil microemulsions controlled by the yield of hydrated electrons. , 2007, Journal of colloid and interface science.

[32]  Xurong Xu,et al.  Ultrasonic Controlled Morphology Transformation of Hollow Calcium Phosphate Nanospheres: A Smart and Biocompatible Drug Release System , 2007 .

[33]  Feng Wang,et al.  Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. , 2006, The journal of physical chemistry. B.

[34]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[35]  A. Alivisatos,et al.  Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals , 2006 .

[36]  Hua Chun Zeng,et al.  Fabrications of hollow nanocubes of Cu(2)O and Cu via reductive self-assembly of CuO nanocrystals. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[37]  Mato Knez,et al.  Monocrystalline spinel nanotube fabrication based on the Kirkendall effect , 2006, Nature materials.

[38]  T. Webb,et al.  Oxidation of thiols to disulfides with monochloro poly(styrenehydantoin) beads , 2006 .

[39]  Bing Xu,et al.  Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. , 2006, Angewandte Chemie.

[40]  E. Wang,et al.  Shape-controlled synthesis of Cu2O nanocrystals assisted by Triton X-100 , 2005 .

[41]  J. Yang,et al.  One‐Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route , 2005 .

[42]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[43]  Steve Semancik,et al.  Porous tin oxide nanostructured microspheres for sensor applications. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[44]  L. Qi,et al.  Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. , 2005, Angewandte Chemie.

[45]  J. Rocha,et al.  Organoselenium and organotellurium compounds: toxicology and pharmacology. , 2004, Chemical reviews.

[46]  C. Murphy,et al.  Nanoindentation of Cu2O Nanocubes , 2004 .

[47]  B. Liu,et al.  Mesoscale organization of CuO nanoribbons: formation of "dandelions". , 2004, Journal of the American Chemical Society.

[48]  Y. Qian,et al.  Room temperature synthesis of Cu2O nanocubes and nanoboxes , 2004 .

[49]  Mostafa A. El-Sayed,et al.  Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution , 2004 .

[50]  Yu‐Guo Guo,et al.  Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. , 2004, Angewandte Chemie.

[51]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[52]  H. Zeng,et al.  Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals , 2004 .

[53]  T. Onami,et al.  Magnesium-induced copper-catalyzed synthesis of unsymmetrical diaryl chalcogenide compounds from aryl iodide via cleavage of the Se-Se or S-S bond. , 2004, The Journal of organic chemistry.

[54]  Catherine J. Murphy,et al.  Solution-phase synthesis of Cu2O nanocubes , 2003 .

[55]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[56]  Younan Xia,et al.  Template-Engaged Replacement Reaction: A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors , 2002 .

[57]  A. Blaaderen,et al.  Synthesis and Characterization of Monodisperse Core−Shell Colloidal Spheres of Zinc Sulfide and Silica , 2001 .

[58]  H. Sies,et al.  Chemistry of biologically important synthetic organoselenium compounds. , 2001, Chemical reviews.

[59]  Naomi J. Halas,et al.  Silver Nanoshells: Variations in Morphologies and Optical Properties , 2001 .

[60]  Bruce W. Turnbull,et al.  Effects of Selenium Supplementation for Cancer Prevention in Patients With Carcinoma of the Skin: A Randomized Controlled Trial , 1996 .

[61]  M. Evers,et al.  Aryl arylazo sulfones chemistry. 2. Reactivity toward alkaline alkane- and arene selenolate and alkane- and arenetellurolate anions , 1986 .

[62]  R. Labaudinière,et al.  Synthesis of aryl phenyl and heteroaryl phenyl selenides by nickel(II)-catalyzed arylation of sodium benzeneselenolate , 1985 .

[63]  TomodaShuji,et al.  Cu(I)-CATALYZED REACTION OF TERMINAL ALKYNES WITH PHENYL SELENOCYANATE IN THE PRESENCE OF TRIETHYLAMIME. SYNTHESIS OF ALKYNYL SELENIDES1 , 1982 .

[64]  E. Gould,et al.  The Reaction of Aryllithium Compounds with Aryl Selenocyanates. A New Synthesis of Unsymmetric Diaryl Selenides1 , 1956 .