The Gomory-Chvátal closure : polyhedrality, complexity, and extensions
暂无分享,去创建一个
[1] William J. Cook,et al. On cutting-plane proofs in combinatorial optimization , 1989 .
[2] M. R. Rao,et al. Odd Minimum Cut-Sets and b-Matchings , 1982, Math. Oper. Res..
[3] Mehmet Tolga Çezik,et al. Cuts for mixed 0-1 conic programming , 2005, Math. Program..
[4] Giovanni Rinaldi,et al. A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..
[5] R. F.,et al. Total Dual Integrality and Integer Polyhedra* , 2001 .
[6] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[7] Daniel Dadush,et al. On the Chvátal–Gomory closure of a compact convex set , 2011, Mathematical Programming.
[8] Richard M. Karp,et al. On linear characterizations of combinatorial optimization problems , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).
[9] Alexander Schrijver,et al. On Cutting Planes , 1980 .
[10] Juan Pablo Vielma,et al. The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhedron , 2010, IPCO.
[11] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[12] E. Balas,et al. Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .
[13] William J. Cook,et al. Combinatorial optimization , 1997 .
[14] Matteo Fischetti,et al. Optimizing over the first Chvátal closure , 2005, Math. Program..
[15] Robert R. Meyer,et al. On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..
[16] Friedrich Eisenbrand,et al. Cutting Planes and the Elementary Closure in Fixed Dimension , 2001, Math. Oper. Res..
[17] Friedrich Eisenbrand,et al. NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..
[18] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[19] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[20] H. Weyl. Elementare Theorie der konvexen Polyeder , 1934 .
[21] Alberto Caprara,et al. Odd cut-sets, odd cycles, and 0-1/2 Chvàtal-Gomory cuts. , 1996 .
[22] Gérard Cornuéjols,et al. Elementary closures for integer programs , 2001, Oper. Res. Lett..
[23] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[24] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[25] Egon Balas,et al. Gomory cuts revisited , 1996, Oper. Res. Lett..
[26] Friedrich Eisenbrand,et al. On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..
[27] P. K. Gupta,et al. Linear programming and theory of games , 1979 .
[28] Noga Alon,et al. Anti-Hadamard Matrices, Coin Weighing, Threshold Gates, and Indecomposable Hypergraphs , 1997, J. Comb. Theory, Ser. A.
[29] Jack Edmonds,et al. Maximum matching and a polyhedron with 0,1-vertices , 1965 .
[30] G. Ziegler. Lectures on Polytopes , 1994 .
[31] Matteo Fischetti,et al. Projected Chvátal–Gomory cuts for mixed integer linear programs , 2008, Math. Program..
[32] Ellis L. Johnson,et al. Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..
[33] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[34] Friedrich Eisenbrand,et al. Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube* , 2003, Comb..
[35] Martin Grötschel,et al. The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..
[36] Matteo Fischetti,et al. {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..
[37] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[38] Ralph E. Gomory,et al. Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.
[39] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[40] Gérard Cornuéjols,et al. Valid inequalities for mixed integer linear programs , 2007, Math. Program..
[41] Alan J. Hoffman,et al. Integral Boundary Points of Convex Polyhedra , 2010, 50 Years of Integer Programming.
[42] S. Halfin. Arbitrarily Complex Corner Polyhedra are Dense in $R^n $ , 1972 .
[43] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[44] Daniel Dadush,et al. The Chvátal-Gomory Closure of a Strictly Convex Body , 2011, Math. Oper. Res..
[45] Matteo Fischetti,et al. On the knapsack closure of 0-1 Integer Linear Programs , 2010, Electron. Notes Discret. Math..