Observation of Bismuth Nanoparticle Premelting by Slow and Ultrafast Laser Heating

[1]  H. Elsayed-Ali,et al.  Melting and Structural Dynamics of Indium Nanoparticles Embedded in Aluminum , 2020 .

[2]  S. Davis,et al.  Size-dependent melting point depression of nickel nanoparticles , 2020, Nanoscale advances.

[3]  G. Wilde,et al.  Effect of high heating rates on the melting behavior of embedded In nanoparticles , 2019, Thermochimica Acta.

[4]  H. Elsayed-Ali,et al.  Lattice dynamics and electronic Grüneisen parameters of femtosecond laser-excited bismuth , 2019, Journal of Physics and Chemistry of Solids.

[5]  Rongjun Zhang,et al.  Ellipsometric study on temperature dependent optical properties of topological bismuth film , 2017 .

[6]  Chuanyi Wang,et al.  In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles , 2017, Nature Communications.

[7]  J. Deng,et al.  Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth , 2016, Advanced science.

[8]  Zixiang Cui,et al.  Comparison of different models of melting transformation of nanoparticles , 2016, Journal of Materials Science.

[9]  Robert Y. Wang,et al.  Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals , 2015, Scientific Reports.

[10]  Zhiyuan Liu,et al.  Logarithmic Size-Dependent Melting Temperature of Nanoparticles , 2015 .

[11]  Zhiyong Gu,et al.  Melting Temperature of Metallic Nanoparticles Metal nanoparticles synthetic methods , 2015 .

[12]  H. Elsayed-Ali,et al.  Electron Diffraction Studies of Structural Dynamics of Bismuth Nanoparticles , 2013 .

[13]  H. Elsayed-Ali,et al.  Nonuniformity in lattice contraction of bismuth nanoclusters heated near its melting point , 2011 .

[14]  H. Elsayed-Ali,et al.  Coherent phonons in bismuth film observed by ultrafast electron diffraction , 2011 .

[15]  Q. Mei,et al.  Melting and superheating of crystalline solids: From bulk to nanocrystals , 2007 .

[16]  J. Rodríguez-Viejo,et al.  Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film , 2007 .

[17]  F. Hua,et al.  Size-dependent melting properties of tin nanoparticles , 2006 .

[18]  P. Zhou,et al.  Ultrafast electron diffraction at surfaces after laser excitation , 2006 .

[19]  H. Elsayed-Ali,et al.  Melting and solidification study of as-deposited and recrystallized Bi thin films , 2006 .

[20]  Guanghai Li,et al.  Diameter-depended thermal expansion properties of Bi nanowire arrays , 2005 .

[21]  M. Efremov,et al.  Size-dependent melting of Bi nanoparticles , 2005 .

[22]  T. Ahrens,et al.  Shock-induced superheating and melting curves of geophysically important minerals , 2004 .

[23]  H. Elsayed-Ali,et al.  Melting and solidification of indium nanocrystals on (002) graphite , 2004 .

[24]  William A. Goddard,et al.  Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments , 2003 .

[25]  S. G. Lyubchenko,et al.  Quantum-size effects in n-type bismuth thin films , 2003 .

[26]  M. Dresselhaus,et al.  Nanowires and nanotubes , 2003 .

[27]  H. D. Yang,et al.  Thermal contraction of au nanoparticles. , 2002, Physical review letters.

[28]  H. Elsayed-Ali,et al.  Temperature dependent reflection electron diffraction study of In(111) and observation of laser-induced transient surface superheating , 2002 .

[29]  K F Kelton,et al.  Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. , 2001, Journal of the American Chemical Society.

[30]  K. Lu,et al.  Melting and superheating of low-dimensional materials , 2001 .

[31]  Yu-Ming Lin,et al.  Bismuth nanowire arrays: Synthesis and galvanomagnetic properties , 2000 .

[32]  H. Elsayed-Ali,et al.  Reflection High-Energy Electron-Diffraction Study of Melting and Solidification of Pb on Graphite , 1997 .

[33]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[34]  Lianmao Peng,et al.  Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices , 1996 .

[35]  J. Frenken,et al.  Surface melting: dry, slippery, wet and faceted surfaces , 1994 .

[36]  Murphy,et al.  Superheating of Bi(0001). , 1993, Physical review. B, Condensed matter.

[37]  Herman,et al.  Superheating of Pb(111). , 1992, Physical review letters.

[38]  B. Cantor,et al.  Melting behaviour of In and Pb particles embedded in an Al matrix , 1991 .

[39]  E. Tosatti,et al.  Hamaker constant calculations and surface melting of metals , 1991 .

[40]  A. C. Levi On Surface Melting , 1991 .

[41]  Denier van der Gon AW,et al.  Crystal-face dependence of surface melting. , 1987, Physical review letters.

[42]  A. Eid,et al.  Heat Capacity and Thermodynamic Properties of Bismuth in the Range 333 to 923 K , 1987 .

[43]  H. Gleiter,et al.  Superheating of metal crystals , 1986 .

[44]  R. A. Bayles,et al.  Small particle melting of pure metals , 1986 .

[45]  J. Frenken,et al.  Observation of surface melting. , 1985, Physical review letters.

[46]  G. Spiller Time-dependent melting and superheating of lead crystallites , 1982 .

[47]  M. Hasegawa,et al.  A theory of melting in metallic small particles , 1980 .

[48]  J. Issi Low-temperature Transport-properties of the Group-v Semimetals , 1979 .

[49]  P. Fischer,et al.  Debye-Waller factor and thermal expansion of arsenic, antimony and bismuth , 1978 .

[50]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[51]  S. J. Peppiatt The melting of small particles. II. Bismuth , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  J. Sambles,et al.  Superheating of Bismuth , 1972 .

[53]  G. Somorjai,et al.  Mean Displacement of Surface Atoms in Palladium and Lead Single Crystals , 1968 .