Twenty-one ML estimators for model selection
暂无分享,去创建一个
[1] D. Lainiotis,et al. System identification : advances and case studies , 1976 .
[2] H. Akaike. Fitting autoregressive models for prediction , 1969 .
[3] Lee D. Davisson,et al. The prediction error of stationary Gaussian time series of unknown covariance , 1965, IEEE Trans. Inf. Theory.
[4] B. G. Quinn,et al. The determination of the order of an autoregression , 1979 .
[5] B. Friedlander,et al. Lattice filters for adaptive processing , 1982, Proceedings of the IEEE.
[6] L. Ahlfors. Complex Analysis , 1979 .
[7] E. Hannan,et al. Recursive estimation of mixed autoregressive-moving average order , 1982 .
[8] J. Rissanen. Estimation of structure by minimum description length , 1982 .
[9] C. Z. Wei. On Predictive Least Squares Principles , 1992 .
[10] Elkan F. Halpern. Polynomial Regression from a Bayesian Approach , 1973 .
[11] Hirotugu Akaike,et al. On entropy maximization principle , 1977 .
[12] Pieter Eykhoff,et al. Trends and progress in system identification , 1981 .
[13] László Gerencsér,et al. AR(infty) estimation and nonparametric stochastic complexity , 1992, IEEE Trans. Inf. Theory.
[14] H. Akaike. Canonical Correlation Analysis of Time Series and the Use of an Information Criterion , 1976 .
[15] Sándor M. Veres,et al. Structure selection of stochastic dynamic systems : the information criterion approach , 1991 .
[16] E. Hannan. The Estimation of the Order of an ARMA Process , 1980 .
[17] H. Jeffreys,et al. Theory of probability , 1896 .
[18] Hirotugu Akaike,et al. MODERN DEVELOPMENT OF STATISTICAL METHODS , 1981 .
[19] A. Atkinson. Posterior probabilities for choosing a regression model , 1978 .
[20] Lennart Ljung,et al. Theory and Practice of Recursive Identification , 1983 .
[21] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[22] Robert H. Shumway,et al. Improved estimators of Kullback-Leibler information for autoregressive model selection in small samples , 1990 .
[23] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[24] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[25] S. Veres. Relations between information criteria for model-structure selection Part 1. The role of bayesian model order estimation , 1990 .
[26] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[27] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[28] E. J. Hannan,et al. Estimating the dimension of a linear system , 1981 .
[29] László Gerencsér,et al. A Computable Criterion for Model Selection for Linear Stochastic Systems , 1992 .
[30] J. Rissanen. Stochastic Complexity and Modeling , 1986 .
[31] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[32] H. Akaike. The Interpretation of Improper Prior Distributions as Limits of Data Dependent Proper Prior Distributions , 1980 .
[33] R. Shibata. Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process , 1980 .
[34] J. Rissanen. Shortest Data Description and Consistency of Order Estimates in Arma-Processes , 1979 .
[35] C. L. Mallows. Some comments on C_p , 1973 .
[36] Clifford M. Hurvich,et al. Regression and time series model selection in small samples , 1989 .
[37] S. D. Hill,et al. Least-informative Bayesian prior distributions for finite samples based on information theory , 1990 .
[38] R. Shibata. Selection of the order of an autoregressive model by Akaike's information criterion , 1976 .
[39] Donald Poskitt,et al. On the posterior odds of time series models , 1983 .