Distributed Beamforming Based on Signal-to Caused-Interference Ratio

This paper presents a distributed beamforming technique that addresses the effect of inter-cell interference on the downlink of cellular communications systems. The beamforming weights are computed in a distributed manner at each transmit sector antenna array without the need for inter-sector communication. The beamforming weights are chosen to compromise between maximizing the power to the served user from each sector while minimizing the interference caused to users served in adjacent sectors. The extensions of this method for variable levels of channel state information feedback and multiple receiver antennas are introduced. Beamforming codebooks with power variations across antennas are presented. We show how users can additionally feed back the fraction of interference caused by each interfering sector to incorporate the urgency of interference avoidance into the transmitter optimization.