On Automating Inductive and Non-inductive Termination Methods
暂无分享,去创建一个
[1] D. Knuth,et al. Simple Word Problems in Universal Algebras , 1983 .
[2] Fairouz Kamareddine,et al. On Formalised Proofs of Termination of Recursive Functions , 1999, PPDP.
[3] Marianne Simonot,et al. Automatizing Termination Proofs of Recursively Defined Functions , 1994, Theor. Comput. Sci..
[4] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[5] Michel Parigot. Recursive Programming with Proofs , 1992, Theor. Comput. Sci..
[6] Jürgen Giesl,et al. Automatically Proving Termination Where Simplification Orderings Fail , 1997, TAPSOFT.
[7] Hans Zantema,et al. Simple Termination of Rewrite Systems , 1997, Theor. Comput. Sci..
[8] Pierre Lescanne,et al. Termination of Rewriting Systems by Polynomial Interpretations and Its Implementation , 1987, Sci. Comput. Program..
[9] Jürgen Giesl,et al. Proving Innermost Normalisation Automatically , 1997, RTA.
[10] N. A C H U M D E R S H O W I T Z. Termination of Rewriting' , 2022 .
[11] Nachum Dershowitz,et al. Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[12] Pascal Manoury,et al. Des preuves de totalite de fonctions comme synthese de programmes , 1992 .
[13] Isabelle Gnaedig,et al. Termination Proofs Using gpo Ordering Constraints , 1997, TAPSOFT.
[14] Joachim Steinbach. Generating Polynomial Orderings , 1994, Inf. Process. Lett..
[15] Nachum Dershowitz,et al. Natural Termination , 1995, Theor. Comput. Sci..
[16] J. Urgen Giesl. Generating Polynomial Orderings for Termination Proofs ? , 1995 .
[17] Pascal Manoury. A User's Friendly Syntax to Define Recursive Functions as Typed lambda-Terms , 1994, TYPES.
[18] Marianne Simonot,et al. An ordinal measure based procedure for termination of functions , 2001, Theor. Comput. Sci..
[19] Donald E. Knuth,et al. Simple Word Problems in Universal Algebras††The work reported in this paper was supported in part by the U.S. Office of Naval Research. , 1970 .