The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN

We present the results of our experimental and theoretical studies concerning the temperature dependence of electron mobility in a two-dimensional electron gas (2DEG) confined at the GaN/AlGaN interface. Experimental mobility of 2912 cm2 (V s)−1 at 4.2 K, remains almost constant up to lattice temperature TL = 150 K, it then decreases rapidly down to 1067 cm2 (V s)−1 at TL = 300 K. In order to compare the experimental results with the theory we use a simple analytical formula for low-field electron mobility based on 2D degenerate statistics for a 2DEG confined in a triangular well. We consider acoustic phonon, polar-optical phonon, dislocation and interface-roughness (IFR) scattering. The polar-optical phonon scattering is the dominant mechanism at high temperatures. At low temperatures, however, both the IFR and dislocation scattering explain, equally well, the observed mobility. In reality, however, a mixture of the two mechanisms together with the deformation potential and piezoelectric scattering will determine the low temperature mobility. The experimental results are discussed in the light of the calculations.

[1]  R. Gaska,et al.  High-temperature performance of AlGaN/GaN HFETs on SiC substrates , 1997, IEEE Electron Device Letters.

[2]  T. Drummond,et al.  Dependence of electron mobility on spatial separation of electrons and donors in AlxGa1−xAs/GaAs heterostructures , 1981 .

[3]  N. Zakhleniuk,et al.  TRANSPORT IN A POLARIZATION-INDUCED 2D ELECTRON GAS , 2001 .

[4]  B. Ridley,et al.  Dynamics of hot-electron scattering in GaN heterostructures , 2002 .

[5]  T. Mimura,et al.  The Effect of Growth Temperature on the Mobility of Two-Dimensional Electron Gas in Selectively Doped GaAs/N-AlGaAs Heterostructures Grown by MBE , 1981 .

[6]  A. Gossard,et al.  Backside-gated modulation-doped GaAs-(AlGa)As heterojunction interface , 1981 .

[7]  Michael S. Shur,et al.  Low field mobility of 2‐d electron gas in modulation doped AlxGa1−xAs/GaAs layers , 1983 .

[8]  A. Gossard,et al.  Dislocation scattering in a two-dimensional electron gas , 2000, cond-mat/0003199.

[9]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[10]  G. Davies,et al.  GROWTH AND DOPING OF GALLIUM ARSENIDE USING MOLECULAR BEAM EPITAXY (MBE): THERMODYNAMIC AND KINETIC ASPECTS , 1983 .

[11]  A. R. Hutson Piezoelectric Scattering and Phonon Drag in ZnO and CdS , 1961 .

[12]  Frank Stern,et al.  Calculated Temperature Dependence of Mobility in Silicon Inversion Layers , 1980 .

[13]  Manijeh Razeghi,et al.  Semiconductor ultraviolet detectors , 1996 .

[14]  A. Ourmazd,et al.  Does luminescence show semiconductor interfaces to be atomically smooth , 1990 .

[15]  T. Mimura,et al.  Room-Temperature Mobility of Two-Dimensional Electron Gas in Selectively Doped GaAs/N-AlGaAs Heterojunction Structures , 1981 .

[16]  B. Ridley The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures , 1982 .

[17]  P. Fewster Interface Roughness and Period Variations in MQW Structures Determined by X-ray Diffraction , 1988 .

[18]  Lester F. Eastman,et al.  The role of dislocation scattering in n-type GaN films , 1998 .

[19]  Michael S. Shur,et al.  Electron mobility in modulation-doped AlGaN-GaN heterostructures , 1999 .

[20]  Lester F. Eastman,et al.  Scattering of electrons at threading dislocations in GaN , 1998 .

[21]  R. Joshi,et al.  Monte Carlo evaluations of degeneracy and interface roughness effects on electron transport in AlGaN–GaN heterostructures , 2000 .

[22]  Hiroyuki Sakaki,et al.  Concentration of electrons in selectively doped GaAlAs/GaAs heterojunction and its dependence on spacer‐layer thickness and gate electric field , 1984 .

[23]  J. Harris,et al.  Relationship between classical and quantum lifetimes in AlGaN/GaN heterostructures , 2001 .

[24]  Sakaki,et al.  Mobility of the two-dimensional electron gas at selectively doped n -type AlxGa1-xAs/GaAs heterojunctions with controlled electron concentrations. , 1986, Physical review. B, Condensed matter.

[25]  J. Harris,et al.  Investigation of phonon emission processes in an AlGaN/GaN heterostructure at low temperatures , 2001 .

[26]  W. Walukiewicz,et al.  Electron mobility in modulation-doped heterostructures , 1984 .

[27]  T. Drummond,et al.  Electron mobility in single and multiple period modulation‐doped (Al,Ga)As/GaAs heterostructures , 1982 .

[28]  F. Stern Self-Consistent Results for n -Type Si Inversion Layers , 1972 .

[29]  David C. Look,et al.  Dislocation Scattering in GaN , 1999 .

[30]  G. Margaritondo The heterojunction parameters from a microscopic point of view , 1983 .

[31]  B. Ridley Polarization-induced electron populations , 2000 .

[32]  Lester F. Eastman,et al.  Mobility of electrons in bulk GaN and Al x Ga 1-x N/GaN heterostructures , 2000 .

[33]  L. Eastman,et al.  Analysis of Schottky gate electron tunneling in polarization induced AlGaN/GaN high electron mobility transistors , 1999 .

[34]  R. Joshi Temperature-dependent electron mobility in GaN: Effects of space charge and interface roughness scattering , 1994 .

[35]  E. Mendez,et al.  Temperature dependence of the electron mobility in GaAs‐GaAlAs heterostructures , 1984 .

[36]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[37]  Single monolayer well size fluctuations in the luminescence of GaAs-GaAlAs superlattices , 1985 .

[38]  B. Ridley,et al.  Hot electron transport in GaAs quantum wells: non-drifting hot phonons , 1990 .

[39]  Isamu Akasaki,et al.  Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters , 1997 .

[40]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[41]  F. Fang,et al.  Negative Field-Effect Mobility on (100) Si Surfaces , 1966 .