Inhibition of CD40-TRAF6 interactions by the small molecule inhibitor 6877002 reduces neuroinflammation

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

[1]  R. Cummings,et al.  Trichuris suis induces human non-classical patrolling monocytes via the mannose receptor and PKC: implications for multiple sclerosis , 2015, Acta neuropathologica communications.

[2]  S. Amor,et al.  GM‐CSF promotes migration of human monocytes across the blood brain barrier , 2015, European journal of immunology.

[3]  Tina Ritschel,et al.  Discovery of Small Molecule CD40-TRAF6 Inhibitors , 2015, J. Chem. Inf. Model..

[4]  G. Ortiz,et al.  Role of the blood-brain barrier in multiple sclerosis. , 2014, Archives of medical research.

[5]  C. Dijkstra,et al.  The helminth Trichuris suis suppresses TLR4-induced inflammatory responses in human macrophages , 2014, Genes and Immunity.

[6]  J. Kreuter,et al.  Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? , 2014, Advanced drug delivery reviews.

[7]  Gert Vriend,et al.  Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance , 2014, Proceedings of the National Academy of Sciences.

[8]  R. Ransohoff,et al.  Development, maintenance and disruption of the blood-brain barrier , 2013, Nature Network Boston.

[9]  M. Buc Role of Regulatory T Cells in Pathogenesis and Biological Therapy of Multiple Sclerosis , 2013, Mediators of inflammation.

[10]  C. Teunissen,et al.  Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status , 2013, Journal of Neuroinflammation.

[11]  S. Jagannath,et al.  A phase 1 study of lucatumumab, a fully human anti‐CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma , 2012, British journal of haematology.

[12]  P. Stys,et al.  Will the real multiple sclerosis please stand up? , 2012, Nature Reviews Neuroscience.

[13]  H. Weiner,et al.  The innate immune system in demyelinating disease , 2012, Immunological reviews.

[14]  D. MacManus,et al.  Firategrast for relapsing remitting multiple sclerosis: a phase 2, randomised, double-blind, placebo-controlled trial , 2012, The Lancet Neurology.

[15]  H. D. de Vries,et al.  Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. , 2011, Brain : a journal of neurology.

[16]  H. D. de Vries,et al.  Radical changes in multiple sclerosis pathogenesis. , 2011, Biochimica et biophysica acta.

[17]  M. Biran,et al.  Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration , 2011, Multiple sclerosis.

[18]  L. Del Valle,et al.  Dyad of CD40/CD40 Ligand Fosters Neuroinflammation at the Blood–Brain Barrier and Is Regulated via JNK Signaling: Implications for HIV-1 Encephalitis , 2010, The Journal of Neuroscience.

[19]  N. Munshi,et al.  A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma , 2010, Haematologica.

[20]  Oliver Soehnlein,et al.  Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile , 2010, The Journal of experimental medicine.

[21]  G. Bishop,et al.  CD40 and autoimmunity: the dark side of a great activator. , 2009, Seminars in immunology.

[22]  L. Beckers,et al.  The immunobiology of CD154-CD40-TRAF interactions in atherosclerosis. , 2009, Seminars in immunology.

[23]  Nancy Whiting,et al.  Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  L. Beckers,et al.  The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. , 2008, Blood.

[25]  R. Zivadinov,et al.  Effect of intravenous methylprednisolone on the number, size and confluence of plaques in relapsing–remitting multiple sclerosis , 2008, Journal of the Neurological Sciences.

[26]  Shijie Jin,et al.  Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. , 2007, The Tohoku journal of experimental medicine.

[27]  W. L. Benedict,et al.  Multiple Sclerosis , 2007, Journal - Michigan State Medical Society.

[28]  P. D. De Jager,et al.  New therapeutic approaches for multiple sclerosis. , 2007, Annual review of medicine.

[29]  A. Kirk,et al.  A New Look at Blockade of T‐cell Costimulation: A Therapeutic Strategy for Long‐term Maintenance Immunosuppression , 2006, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[30]  J. Greenwood,et al.  Blood‐brain barrier‐specific properties of a human adult brain endothelial cell line , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  F. Santilli,et al.  Enhanced soluble CD40 ligand contributes to endothelial cell dysfunction in vitro and monocyte activation in patients with diabetes mellitus: effect of improved metabolic control , 2005, Diabetologia.

[32]  J. Couzin Magnificent Obsession , 2005, Science.

[33]  Christine D. Dijkstra,et al.  Flavonoids Influence Monocytic GTPase Activity and Are Protective in Experimental Allergic Encephalitis , 2004, The Journal of experimental medicine.

[34]  D. Boumpas,et al.  Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients , 2004, Lupus.

[35]  S. Khoury,et al.  Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. , 2003, The Journal of allergy and clinical immunology.

[36]  G. Illei,et al.  A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. , 2003, Arthritis and rheumatism.

[37]  T. K. van den Berg,et al.  Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study. , 2003, Biochemical pharmacology.

[38]  L. Boon,et al.  Protection of marmoset monkeys against EAE by treatment with a murine antibody blocking CD40 (mu5D12) , 2002, European journal of immunology.

[39]  S. Miller,et al.  Transient anti-CD154-mediated immunotherapy of ongoing relapsing experimental autoimmune encephalomyelitis induces long-term inhibition of disease relapses , 2002, Journal of Neuroimmunology.

[40]  R. Hynes,et al.  CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism , 2002, Nature Medicine.

[41]  P. Adamson,et al.  Reactive oxygen species enhance the migration of monocytes across the blood‐brain barrier in vitro , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[42]  Jakob S. Jensen,et al.  Increased T cell expression of CD154 (CD40‐ligand) in multiple sclerosis , 2001, European journal of neurology.

[43]  B. Becher,et al.  The Clinical Course of Experimental Autoimmune Encephalomyelitis and Inflammation Is Controlled by the Expression of Cd40 within the Central Nervous System , 2001, The Journal of experimental medicine.

[44]  W. Sibley,et al.  Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. , 2000, The Cochrane database of systematic reviews.

[45]  R. Colvin,et al.  Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand , 2000, Nature Medicine.

[46]  Moses Rodriguez,et al.  CD40L is Critical for Protection from Demyelinating Disease and Development of Spontaneous Remyelination in a Mouse Model of Multiple Sclerosis , 2000, Brain pathology.

[47]  S. Miller,et al.  Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. , 1999, The Journal of clinical investigation.

[48]  Ludwig Kappos,et al.  Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis , 1998, The Lancet.

[49]  G. Ebers,et al.  Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis , 1998, The Lancet.

[50]  T. Owens,et al.  Immune cell entry to the CNS--a focus for immunoregulation of EAE. , 1998, Research in immunology.

[51]  A. Aruffo,et al.  CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Chappell,et al.  Dihydrorhodamine 123: a fluorescent probe for superoxide generation? , 1993, European journal of biochemistry.