Beam delivery and beamstrahlung considerations for ultra-high energy linear colliders

As part of the Snowmass'21 community planning excercise, the Advanced Accelerator Concepts (AAC) community proposed future linear colliders with center-of-mass energies up to 15 TeV and luminosities up to 50$\times10^{34}$ cm$^{-2}$s$^{-1}$ in a compact footprint. In addition to being compact, these machines must also be energy efficient. We identify two challenges that must be addressed in the design of these machines. First, the Beam Delivery System (BDS) must not add significant length to the accelerator complex. Second, beam parameters must be chosen to mitigate beamstrahlung effects and maximize the luminosity-per-power of the machine. In this paper, we review advances in plasma lens technology that will help to reduce the length of the BDS system and we detail new Particle-in-Cell simulation studies that will provide insight into beamstrahlung mitigation techniques. We apply our analysis to both $e^+e^-$ and $\gamma\gamma$ colliders.

[1]  M. Narain,et al.  On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force , 2023, Journal of Instrumentation.

[2]  T. Grismayer,et al.  Signatures for strong-field QED physics in the quantum limit of beamstrahlung , 2023, 2302.01321.

[3]  A. Leblanc,et al.  Pushing the Frontier in the Design of Laser-Based Electron Accelerators with Groundbreaking Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Supercomputers , 2022, SC22: International Conference for High Performance Computing, Networking, Storage and Analysis.

[4]  M. Narain,et al.  Report of the Snowmass ’ 21 Collider Implementation Task Force , 2022 .

[5]  E. Esarey,et al.  Beam delivery and final focus systems for multi-TeV advanced linear colliders , 2022, Journal of Instrumentation.

[6]  P. Bucksbaum,et al.  Preparation of Strong-field QED Experiments at FACET-II , 2022, Optica High-brightness Sources and Light-driven Interactions Congress 2022.

[7]  I. Andriyash,et al.  Efficiency and beam quality for positron acceleration in loaded plasma wakefields , 2021, Physical Review Research.

[8]  E. S. Yoon,et al.  Witness electron beam injection using an active plasma lens for a proton beam-driven plasma wakefield accelerator , 2021, Physical Review Accelerators and Beams.

[9]  Henri Vincenti,et al.  Porting WarpX to GPU-accelerated platforms , 2021, Parallel Comput..

[10]  W. Farabolini,et al.  Strong focusing gradient in a linear active plasma lens , 2020, Physical Review Accelerators and Beams.

[11]  C. A. Lindstrom,et al.  Staging of plasma-wakefield accelerators , 2020, Physical Review Accelerators and Beams.

[12]  A. Bashinov,et al.  Strategies for particle resampling in PIC simulations , 2020, Comput. Phys. Commun..

[13]  M. Tamburini,et al.  Efficient high-energy photon production in the supercritical QED regime , 2019, Physical Review D.

[14]  J. Cary,et al.  Laser-ionized, beam-driven, underdense, passive thin plasma lens , 2019, Physical Review Accelerators and Beams.

[15]  S. Hooker,et al.  Erratum: Emittance Preservation in an Aberration-Free Active Plasma Lens [Phys. Rev. Lett. 121, 194801 (2018)]. , 2019, Physical Review Letters.

[16]  L. Silva,et al.  Prospect of Studying Nonperturbative QED with Beam-Beam Collisions. , 2018, Physical review letters.

[17]  R. Fonseca,et al.  Bright γ rays source and nonlinear Breit-Wheeler pairs in the collision of high density particle beams , 2018, Physical Review Accelerators and Beams.

[18]  V. M. Ghete,et al.  Observation of Higgs Boson Decay to Bottom Quarks. , 2018, Physical review letters.

[19]  S. Hooker,et al.  Emittance Preservation in an Aberration-Free Active Plasma Lens. , 2018, Physical review letters.

[20]  E. Adli,et al.  Analytic plasma wakefield limits for active plasma lenses , 2018, 1802.02750.

[21]  C. Geddes,et al.  Nonuniform discharge currents in active plasma lenses , 2017 .

[22]  E. Adli,et al.  Design of general apochromatic drift-quadrupole beam lines , 2016 .

[23]  S. Mersi Phase-2 Upgrade of the CMS Tracker , 2016 .

[24]  R. G. Evans,et al.  Contemporary particle-in-cell approach to laser-plasma modelling , 2015 .

[25]  E Wallin,et al.  Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Ricardo A. Fonseca,et al.  Particle merging algorithm for PIC codes , 2014, Comput. Phys. Commun..

[27]  M. Thomson Model-Independent Measurement of the e+e– ! HZ Cross Section at a Future e+e– Linear Collider using Hadronic Z Decays , 2015 .

[28]  M. Tigner,et al.  Handbook of Accelerator Physics and Engineering , 2013 .

[29]  B H P Broks,et al.  Nonlocal-thermal-equilibrium model of a pulsed capillary discharge waveguide. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[31]  S. V. Bulanov,et al.  Simulations of a hydrogen-filled capillary discharge waveguide. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  A. Seryi,et al.  Novel final focus design for future linear colliders. , 2001, Physical review letters.

[33]  P. Chen,et al.  CAIN: Conglomérat d'ABEL et d'Interactions Non-linéaires☆ , 1995 .

[34]  P. Chen Beamstrahlung and the QED, QCD backgrounds in linear colliders , 1992 .

[35]  R. Helm,et al.  Final focus systems for linear colliders , 1992 .

[36]  Haas,et al.  z-pinch plasma lens focusing of a heavy-ion beam. , 1991, Physical review letters.

[37]  Chen,et al.  Plasma-based adiabatic focuser. , 1990, Physical review letters.

[38]  Rosenzweig,et al.  Final focusing and enhanced disruption from an underdense plasma lens in a linear collider. , 1989, Physical review. D, Particles and fields.

[39]  K. Oide,et al.  Synchrotron-radiation limit of the luminosity in TeV linear colliders , 1989 .

[40]  K. Oide,et al.  Synchrotron-radiation limit on the focusing of electron beams. , 1988, Physical review letters.

[41]  K. Frank,et al.  A Z-Pinch Plasma Lens for Focusing High-Energy Particles in an Accelerator , 1987, IEEE Transactions on Plasma Science.

[42]  F. Ruggiero,et al.  APOCHROMATIC FOCUSING FOR LINEAR COLLIDERS , 1987 .

[43]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[44]  K. Frank,et al.  Studies of a plasma lens with pseudo-spark geometry for application in high energy particle accelerators , 1984 .

[45]  Willard H. Bennett,et al.  Magnetically self-focussing streams , 1934 .