A 13-bit 8-kS/s $\Delta$ – $\Sigma$ Readout IC Using ZCB Integrators With an Embedded Resistive Sensor Achieving 1.05-pJ/Conversion Step and a 65-dB PSRR

This paper reports on an energy-efficient <inline-formula> <tex-math notation="LaTeX">$\Delta $ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$\Sigma $ </tex-math></inline-formula> readout IC (ROIC) with a high power-supply-rejection ratio (PSRR). The static power consumption is minimized by applying a zero-crossing-based (ZCB) circuit to implement switched-capacitor (SC) integrators, while the resistive sensor is embedded inside the circuit to reuse the bias current. Oversampling <inline-formula> <tex-math notation="LaTeX">$\Delta $ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$\Sigma $ </tex-math></inline-formula> modulation also directly provides the digitized output, avoiding the need for a power-hungry instrumentation amplifier while preserving the linear settling behavior of the ZCB SC integrators. A dual-path bridge measurement aids in upholding PSRR of ROIC against bridge imbalance. Prototyped in 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS, the dual-path ROIC for the bridge measurement shows a nonlinearity of <400 ppm and an rms-noise-equivalent resolution of 13 bits at a conversion rate of 8 kS/s, corresponding to a figure of merit of 1.05-pJ/conversion step. The achieved noise-frequency-independent PSRR is 65 dB, and the supply and temperature sensitivities are 0.23%/V and 55 ppm/°C, respectively.

[1]  A. Bakker,et al.  A CMOS nested-chopper instrumentation amplifier with 100-nV offset , 2000, IEEE Journal of Solid-State Circuits.

[2]  Georges G. E. Gielen,et al.  Supply-Noise-Resilient Design of a BBPLL-Based Force-Balanced Wheatstone Bridge Interface in 130-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[3]  Kofi A. A. Makinwa,et al.  A 20-b $\pm$ 40-mV Range Read-Out IC With 50-nV Offset and 0.04% Gain Error for Bridge Transducers , 2012, IEEE Journal of Solid-State Circuits.

[4]  Mohammad Maymandi-Nejad,et al.  A Fully Digital Front-End Architecture for ECG Acquisition System With 0.5 V Supply , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[5]  Howard Tang,et al.  A 5.8 nW 9.1-ENOB 1-kS/s Local Asynchronous Successive Approximation Register ADC for Implantable Medical Device , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[6]  David Blaauw,et al.  A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[7]  Kong-Pang Pun,et al.  A Resistor-Based Sub-1-V CMOS Smart Temperature Sensor for VLSI Thermal Management , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[8]  Hansraj Bhamra,et al.  A Noise-Power-Area Optimized Biosensing Front End for Wireless Body Sensor Nodes and Medical Implantable Devices , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Kong-Pang Pun,et al.  A High-Linearity Capacitance-to-Digital Converter Suppressing Charge Errors From Bottom-Plate Switches , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Mohammad Taherzadeh-Sani,et al.  A 170-dB $\Omega $ CMOS TIA With 52-pA Input-Referred Noise and 1-MHz Bandwidth for Very Low Current Sensing , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[11]  Kunihiko Iizuka,et al.  An Analog Front-End for a Multifunction Sensor Employing a Weak-Inversion Biasing Technique With 26 nVrms, 25 aCrms, and 19 fArms Input-Referred Noise , 2016, IEEE Journal of Solid-State Circuits.

[12]  Byung-Geun Lee,et al.  A 10-bit 200-MS/s Zero-Crossing-Based Pipeline ADC in 0.13- $\mu $ m CMOS Technology , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[13]  Bertrand Gomez,et al.  A robust and versatile, −40°C to +180°C, 8Sps to 1kSps, multi power source wireless sensor system for aeronautic applications , 2017, 2017 Symposium on VLSI Circuits.

[14]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[15]  Kofi A. A. Makinwa,et al.  9.8 An energy-efficient 3.7nV/√Hz bridge-readout IC with a stable bridge offset compensation scheme , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[16]  Catherine Dehollain,et al.  A remotely powered implantable IC for recording mouse local temperature with ±0.09 °C accuracy , 2013, 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[17]  Wei Wang,et al.  A 480 fJ/conversion-step 13-bit Resistive Sensor Readout IC with a 1%/V Power Supply Sensitivity , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[18]  SeongHwan Cho,et al.  A 1-GS/s 9-bit Zero-Crossing-Based Pipeline ADC Using a Resistor as a Current Source , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Hae-Seung Lee,et al.  Comparator-based switched-capacitor circuits for scaled CMOS technologies , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[20]  Hae-Seung Lee,et al.  A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC , 2007, IEEE Journal of Solid-State Circuits.