Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel

[1]  Paul D. Williams Entry , 2018, Definitions.

[2]  John L. Robinson,et al.  Cellular Milieu Imparts Distinct Pathological α-Synuclein Strains in α-Synucleinopathies , 2018, Nature.

[3]  E. L. Guenther,et al.  Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2 , 2018, Nature Structural & Molecular Biology.

[4]  R. Riek,et al.  Cryo-EM structure of alpha-synuclein fibrils , 2018, bioRxiv.

[5]  G. Schröder,et al.  Fibril structure of amyloid-β(1–42) by cryo–electron microscopy , 2017, Science.

[6]  V. Sossi,et al.  Homozygous alpha-synuclein p.A53V in familial Parkinson's disease , 2017, Neurobiology of Aging.

[7]  A. Murzin,et al.  Cryo-EM structures of Tau filaments from Alzheimer’s disease brain , 2017, Nature.

[8]  Charles D. Schwieters,et al.  Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein , 2016, Nature Structural &Molecular Biology.

[9]  M. Diamond,et al.  Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry. , 2015, Journal of visualized experiments : JoVE.

[10]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[11]  Nicholas K. Sauter,et al.  Structure of the toxic core of α-synuclein from invisible crystals , 2015, Nature.

[12]  D. Geschwind,et al.  Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism , 2015, Proceedings of the National Academy of Sciences.

[13]  M. Giugliano,et al.  α-Synuclein strains cause distinct synucleinopathies after local and systemic administration , 2015, Nature.

[14]  Nigel J. Cairns,et al.  Proteopathic tau seeding predicts tauopathy in vivo , 2014, Proceedings of the National Academy of Sciences.

[15]  A. Paetau,et al.  A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology , 2014, Neurobiology of Aging.

[16]  B. Meier,et al.  Structural and functional characterization of two alpha-synuclein strains , 2013, Nature Communications.

[17]  M. Farrer,et al.  Alpha‐synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[18]  Ronald Melki,et al.  G51D α‐synuclein mutation causes a novel Parkinsonian–pyramidal syndrome , 2013, Annals of neurology.

[19]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[20]  A. Björklund,et al.  Alpha-Synuclein Cell-to-Cell Transfer and Seeding in Grafted Dopaminergic Neurons In Vivo , 2012, PloS one.

[21]  Z. Zhou,et al.  Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches , 2011, Proceedings of the National Academy of Sciences.

[22]  Jacqueline Cloos,et al.  Cell sensitivity assays: the MTT assay. , 2011, Methods in molecular biology.

[23]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[24]  Xing Zhang,et al.  3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry , 2010, Cell.

[25]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[26]  Henning Stahlberg,et al.  The fold of α-synuclein fibrils , 2008, Proceedings of the National Academy of Sciences.

[27]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[28]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[29]  J. Hoenicka,et al.  The new mutation, E46K, of α‐synuclein causes parkinson and Lewy body dementia , 2004, Annals of neurology.

[30]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[31]  Y. Fujiyoshi,et al.  Structure and gating mechanism of the acetylcholine receptor pore , 2003, Nature.

[32]  Nancy A. Jenkins,et al.  Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Price,et al.  Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Susan E Daniel,et al.  Characterisation of isolated α-synuclein filaments from substantia nigra of Parkinson's disease brain , 2000, Neuroscience Letters.

[35]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[36]  Nigel J. Cairns,et al.  Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies , 1998, Neuroscience Letters.

[37]  R. Crowther,et al.  α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies , 1998 .

[38]  R A Crowther,et al.  alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Wolfson,et al.  Shape complementarity at protein–protein interfaces , 1994, Biopolymers.