Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces.

In recent years, the physical properties and interaction forces of microbial cell surfaces have been extensively studied using atomic force microscopy (AFM). A variety of AFM force spectroscopy approaches have been developed for investigating native cell surfaces with piconewton (nanonewton) sensitivity and nanometer lateral resolution, providing novel information on the nanomechanical properties of cell walls, on surface forces such as van der Waals and electrostatic forces, solvation and steric/bridging forces, and on the forces and localization of molecular recognition events. The intention of this article is to survey these different applications and to discuss related methodologies (how to prepare tips and samples, how to record and interpret force curves).

[1]  D. Dixon,et al.  Force of Interaction between a Biocolloid and an Inorganic Oxide: Complexity of Surface Deformation, Roughness, and Brushlike Behavior , 2001 .

[2]  H. Butt,et al.  Electrostatic interaction in atomic force microscopy. , 1991, Biophysical journal.

[3]  T. Lister,et al.  In-vivo Atomic Force Microscopy of Surface Proteins within Deinococcus Radiodurans , 2001 .

[4]  Myung-Hwan Whangbo,et al.  Surface analysis with STM and AFM : experimental and theoretical aspects of image analysis , 1996 .

[5]  T. S. Elliot,et al.  Microbial Cell Surface Analysis. Structural and Physicochemical Methods , 1992 .

[6]  Patrick A. Gerin,et al.  Direct Probing of the Surface Ultrastructure and Molecular Interactions of Dormant and Germinating Spores ofPhanerochaete chrysosporium , 1999, Journal of bacteriology.

[7]  Job Ubbink,et al.  Imaging of lactic acid bacteria with AFM--elasticity and adhesion maps and their relationship to biological and structural data. , 2003, Ultramicroscopy.

[8]  Y. Dufrêne,et al.  Application of X-ray photoelectron spectroscopy to microorganisms , 1994 .

[9]  M. Radmacher,et al.  Elastic properties of the cell wall of Magnetospirillum gryphiswaldense investigated by atomic force microscopy , 1998 .

[10]  Y. Dufrêne,et al.  Probing microbial cell surface charges by atomic force microscopy , 2002 .

[11]  J. Duval,et al.  Probing surface structures of Shewanella spp. by microelectrophoresis. , 2006, Biophysical journal.

[12]  Hermann E. Gaub,et al.  Discrete interactions in cell adhesion measured by single-molecule force spectroscopy , 2000, Nature Cell Biology.

[13]  T. Camesano,et al.  Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. , 2003, Environmental science & technology.

[14]  Darrell Velegol,et al.  Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  C. Drummond,et al.  Laterally-Resolved Force Microscopy of Biological MicrospheresOocysts of Cryptosporidium Parvum , 2000 .

[16]  Charles M. Lieber,et al.  Chemical Force Microscopy: Exploiting Chemically-Modified Tips To Quantify Adhesion, Friction, and Functional Group Distributions in Molecular Assemblies , 1995 .

[17]  B. Logan,et al.  Probing Bacterial Electrosteric Interactions Using Atomic Force Microscopy , 2000 .

[18]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A Ikai,et al.  A method for anchoring round shaped cells for atomic force microscope imaging. , 1995, Biophysical journal.

[20]  P K Hansma,et al.  Measuring the viscoelastic properties of human platelets with the atomic force microscope. , 1996, Biophysical journal.

[21]  C. J. Oss,et al.  Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells , 1996 .

[22]  M. Benoit Cell adhesion measured by force spectroscopy on living cells. , 2002, Methods in cell biology.

[23]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[24]  A. Vasella,et al.  Aggregation of yeast cells: direct measurement of discrete lectin-carbohydrate interactions. , 2003, Microbiology.

[25]  H. C. van der Mei,et al.  Electrophoretic Mobility Distributions of Single-Strain Microbial Populations , 2001, Applied and Environmental Microbiology.

[26]  Rolf Bos,et al.  A reference guide to microbial cell surface hydrophobicity based on contact angles , 1998 .

[27]  H. C. van der Mei,et al.  Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods , 2004, Applied and Environmental Microbiology.

[28]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[29]  C. Drummond,et al.  Direct Force Measurements between Silica and Alumina , 1997 .

[30]  W F Heinz,et al.  Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. , 1999, Trends in biotechnology.

[31]  E. Dague,et al.  Surface Structure and Nanomechanical Properties of Shewanella putrefaciens Bacteria at Two pH values (4 and 10) Determined by Atomic Force Microscopy , 2005, Journal of bacteriology.

[32]  T. Beveridge,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and α-FeOOH , 2001, Science.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  H. Busscher,et al.  On relations between microscopic and macroscopic physicochemical properties of bacterial cell surfaces: An AFM study on Streptococcus mitis strains , 2003 .

[35]  J. Hubbell,et al.  Force Measurements between Bacteria and Poly(ethylene glycol)-Coated Surfaces , 2000 .

[36]  J. Israelachvili Intermolecular and surface forces , 1985 .

[37]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[38]  H. C. van der Mei,et al.  Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. , 2004, Microbiology.

[39]  G. Georgiou,et al.  Evaluating the interaction of bacteria with biomaterials using atomic force microscopy. , 1998, Journal of biomaterials science. Polymer edition.

[40]  J. Hoh,et al.  Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy , 1996 .

[41]  Nidal Hilal,et al.  Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope , 1998 .

[42]  H. C. van der Mei,et al.  Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. , 2000, Biophysical journal.

[43]  L. Gram,et al.  Changes in cell morphology of Listeria monocytogenes and Shewanella putrefaciens resulting from the action of protamine , 1996, Applied and environmental microbiology.

[44]  Glenn A. Burks,et al.  Macroscopic and Nanoscale Measurements of the Adhesion of Bacteria with Varying Outer Layer Surface Composition , 2003 .

[45]  Yves F. Dufrêne,et al.  Using nanotechniques to explore microbial surfaces , 2004, Nature Reviews Microbiology.

[46]  Mukul M. Sharma,et al.  Adhesion Forces between E. c oli Bacteria and Biomaterial Surfaces , 1999 .

[47]  A. Ikai,et al.  Method for immobilizing microbial cells on gel surface for dynamic AFM studies. , 1995, Biophysical journal.

[48]  M. Hochella,et al.  Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy , 2000 .

[49]  T. Beveridge Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles , 1999, Journal of bacteriology.

[50]  Janshoff,et al.  Force Spectroscopy of Molecular Systems-Single Molecule Spectroscopy of Polymers and Biomolecules. , 2000, Angewandte Chemie.

[51]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[52]  Y. Dufrêne,et al.  Atomic Force Microscopy, a Powerful Tool in Microbiology , 2002, Journal of bacteriology.

[53]  C. Rotsch,et al.  AFM IMAGING AND ELASTICITY MEASUREMENTS ON LIVING RAT LIVER MACROPHAGES , 1997, Cell biology international.

[54]  Baikun Li,et al.  Bacterial adhesion to glass and metal-oxide surfaces. , 2004, Colloids and surfaces. B, Biointerfaces.

[55]  T. Camesano,et al.  Polysaccharide properties probed with atomic force microscopy , 2003, Journal of microscopy.

[56]  Chris J. Wright,et al.  Atomic Force Microscopy Study of the Adhesion of Saccharomyces cerevisiae. , 2001, Journal of colloid and interface science.

[57]  J. Duval,et al.  Electrophoresis of diffuse soft particles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[58]  Manfred H. Jericho,et al.  Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria , 2002 .

[59]  F. Gaboriaud,et al.  Morphological specificity of yeast and filamentous Candida albicans forms on surface properties. , 2005, Comptes rendus biologies.

[60]  A. Steele,et al.  The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces , 2002 .

[61]  Joshua R. Smith,et al.  Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy. , 1996, Biofouling.

[62]  D. S. Smith,et al.  Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens. , 2001, Environmental science & technology.

[63]  J. Duval,et al.  Analysis of the interfacial properties of fibrillated and nonfibrillated oral streptococcal strains from electrophoretic mobility and titration measurements: evidence for the shortcomings of the 'classical soft-particle approach'. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[64]  Manfred Radmacher,et al.  Measuring the elastic properties of living cells by the atomic force microscope. , 2002, Methods in cell biology.

[65]  M. Radmacher,et al.  Bacterial turgor pressure can be measured by atomic force microscopy. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  H C van der Mei,et al.  Physico-chemistry of initial microbial adhesive interactions--its mechanisms and methods for study. , 1999, FEMS microbiology reviews.

[67]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[68]  T. Camesano,et al.  Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442. , 2003, Biomacromolecules.

[69]  Jacob N. Israelachvili,et al.  Measurements of Hydrophobic and DLVO Forces in Bubble-Surface Interactions in Aqueous Solutions , 1994 .

[70]  N. Mozes Microbial cell surface analysis : structural and physico-chemical methods , 1991 .

[71]  C. M. Peterson,et al.  Imaging cells with the atomic force microscope. , 1990, Journal of structural biology.

[72]  Y. Dufrêne Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. , 2000, Biophysical journal.

[73]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[74]  B. Logan,et al.  Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves , 2002 .

[75]  Bernard Nysten,et al.  Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy , 2003 .

[76]  John E. Sader,et al.  PROBING THE SURFACE OF LIVING DIATOMS WITH ATOMIC FORCE MICROSCOPY: THE NANOSTRUCTURE AND NANOMECHANICAL PROPERTIES OF THE MUCILAGE LAYER 1 , 2003 .