Invited review the coiled coil silk of bees, ants, and hornets.
暂无分享,去创建一个
T. Sutherland | Sarah Weisman | Sarah Weisman | S. Mudie | Tara D Sutherland | Andrew A Walker | Stephen T Mudie | A. Walker
[1] K. Mita,et al. Identification of Four Major Hornet Silk Genes with a Complex of Alanine-Rich and Serine-Rich Sequences in Vespa simillima xanthoptera Cameron , 2007, Bioscience, biotechnology, and biochemistry.
[2] David L. Kaplan,et al. Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk , 2011, PloS one.
[3] T. Schultz. In search of ant ancestors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[4] H. Sezutsu,et al. Hornet silk proteins in the cocoons produced by different Vespa species inhabiting Japan. , 2008, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
[5] S. Maensiri,et al. Alternative biomaterials: natural, non-woven, fibroin-based silk nanofibers of weaver ants (Oecophylla smaragdina). , 2010, International journal of biological macromolecules.
[6] H. Hepburn,et al. Extensometric properties of insect fibroins: The green lacewing cross-β, honeybee α-helical and greater waxmoth parallel-β conformations , 1979 .
[7] J. Ishay,et al. Thermal characterization of social vespid silk , 2003 .
[8] Thermovoltaic properties of hornet silk , 2006, Microscopy research and technique.
[9] S. Nicolson,et al. Brood comb as a humidity buffer in honeybee nests , 2010, Naturwissenschaften.
[10] J. Tormos,et al. SYSTEMATICS AND LARVAL MORPHOLOGY OF THE EUROPEAN AMPULEX JURINE, 1807 (HYMENOPTERA : SPHECIDAE) , 1998 .
[11] J. Ishay,et al. Silk structure in the hornet cocoon. , 2004, Journal of electron microscopy.
[12] D. Grimaldi,et al. Evolution of the insects , 2005 .
[13] J. Carpenter. Phylogeny of Aculeata: Chrysidoidea and Vespoidea (Hymenoptera) , 1993 .
[14] T. Sutherland,et al. Conservation of essential design features in coiled coil silks. , 2007, Molecular biology and evolution.
[15] D. Himmelsbach,et al. Characterization of pedicel, paper, and larval silk from nest ofPolistes annularis (L.) , 1990, Journal of Chemical Ecology.
[16] Jiahai Shi,et al. Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. , 2008, Biomaterials.
[17] J. Tormos,et al. Description of the Mature Larvae of Chrysis gracillima and Omalus biaccinctus and New Data on the Biology of Trichrysis cyanea (Hymenoptera: Chrysididae) , 1996 .
[18] W. Kenchington,et al. Arthropod Silks: The Problem of Fibrous Proteins in Animal Tissues , 1971 .
[19] F. Zara,et al. Ultrastructure of the Salivary Glands of Pachycondyla (=Neoponera) villosa (Fabricius) (Formicidae: Ponerinae): Functional Changes during the Last Larval Instar , 2002 .
[20] J. Ishay,et al. ELECTRIC CAPACITANCE AND CURRENT OF THE ORIENTAL HORNET SILK COCOON CAP , 1990 .
[21] S. Buys. Last instar larva of Penepodium dubium (Hymenoptera: Sphecidae). , 2001, Revista de biologia tropical.
[22] H. Hepburn,et al. THE COMBS OF HONEYBEES AS COMPOSITE MATERIALS , 1988 .
[23] F. Ruttner,et al. Thermoregulation im Hornissennest , 1971, Zeitschrift für vergleichende Physiologie.
[24] E. Atkins. A four-strand coiled-coil model for some insect fibrous proteins☆ , 1967 .
[25] T. Sutherland,et al. Insect silk: one name, many materials. , 2010, Annual review of entomology.
[26] J. Ishay,et al. Thermoelectric effect in hornet (Vespa orientalis) silk and thermoregulation in a hornet's nest , 1995 .
[27] J. Ishay. Die thermoregulation im Hornisen-nest , 1971 .
[28] Jianxiang Wang,et al. Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs , 2010, Proceedings of the National Academy of Sciences.
[29] J. Church,et al. Honeybee silk: recombinant protein production, assembly and fiber spinning. , 2010, Biomaterials.
[30] S. Taboga,et al. Silk formation mechanisms in the larval salivary glands ofApis mellifera (Hymenoptera: Apidae) , 2003, Journal of Biosciences.
[31] J. Warwicker. Comparative studies of fibroins. II. The crystal structures of various fibroins. , 1960, Journal of molecular biology.
[32] Y. Tamada,et al. Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk. , 2009, International journal of biological macromolecules.
[33] Jun Wang,et al. Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator , 2010, Science.
[34] E. Silva-Zacarin,et al. Macromolecular array patterns of silk gland secretion in social Hymenoptera larvae. , 2004, Genetics and molecular research : GMR.
[35] W. Kenchington,et al. Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). , 1967, Journal. Royal Microscopical Society.
[36] S. Jay. The Cocoon of the Honey Bee, Apis mellifera L. , 1964, The Canadian Entomologist.
[37] J. Church,et al. An unlikely silk: the composite material of green lacewing cocoons. , 2008, Biomacromolecules.
[38] H. Sezutsu,et al. Drawing-induced changes in morphology and mechanical properties of hornet silk gel films. , 2010, Biomacromolecules.
[39] T. Sutherland,et al. A highly divergent gene cluster in honey bees encodes a novel silk family. , 2006, Genome research.
[40] J. Ishay,et al. Hornet silk: thermophysical properties , 2002 .
[41] J. Ishay,et al. Comb cells and puparial silk in the oriental hornet nest: Structure and function , 1990, Journal of morphology.