Invited review the coiled coil silk of bees, ants, and hornets.

In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks.

[1]  K. Mita,et al.  Identification of Four Major Hornet Silk Genes with a Complex of Alanine-Rich and Serine-Rich Sequences in Vespa simillima xanthoptera Cameron , 2007, Bioscience, biotechnology, and biochemistry.

[2]  David L. Kaplan,et al.  Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk , 2011, PloS one.

[3]  T. Schultz In search of ant ancestors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[4]  H. Sezutsu,et al.  Hornet silk proteins in the cocoons produced by different Vespa species inhabiting Japan. , 2008, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[5]  S. Maensiri,et al.  Alternative biomaterials: natural, non-woven, fibroin-based silk nanofibers of weaver ants (Oecophylla smaragdina). , 2010, International journal of biological macromolecules.

[6]  H. Hepburn,et al.  Extensometric properties of insect fibroins: The green lacewing cross-β, honeybee α-helical and greater waxmoth parallel-β conformations , 1979 .

[7]  J. Ishay,et al.  Thermal characterization of social vespid silk , 2003 .

[8]  Thermovoltaic properties of hornet silk , 2006, Microscopy research and technique.

[9]  S. Nicolson,et al.  Brood comb as a humidity buffer in honeybee nests , 2010, Naturwissenschaften.

[10]  J. Tormos,et al.  SYSTEMATICS AND LARVAL MORPHOLOGY OF THE EUROPEAN AMPULEX JURINE, 1807 (HYMENOPTERA : SPHECIDAE) , 1998 .

[11]  J. Ishay,et al.  Silk structure in the hornet cocoon. , 2004, Journal of electron microscopy.

[12]  D. Grimaldi,et al.  Evolution of the insects , 2005 .

[13]  J. Carpenter Phylogeny of Aculeata: Chrysidoidea and Vespoidea (Hymenoptera) , 1993 .

[14]  T. Sutherland,et al.  Conservation of essential design features in coiled coil silks. , 2007, Molecular biology and evolution.

[15]  D. Himmelsbach,et al.  Characterization of pedicel, paper, and larval silk from nest ofPolistes annularis (L.) , 1990, Journal of Chemical Ecology.

[16]  Jiahai Shi,et al.  Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. , 2008, Biomaterials.

[17]  J. Tormos,et al.  Description of the Mature Larvae of Chrysis gracillima and Omalus biaccinctus and New Data on the Biology of Trichrysis cyanea (Hymenoptera: Chrysididae) , 1996 .

[18]  W. Kenchington,et al.  Arthropod Silks: The Problem of Fibrous Proteins in Animal Tissues , 1971 .

[19]  F. Zara,et al.  Ultrastructure of the Salivary Glands of Pachycondyla (=Neoponera) villosa (Fabricius) (Formicidae: Ponerinae): Functional Changes during the Last Larval Instar , 2002 .

[20]  J. Ishay,et al.  ELECTRIC CAPACITANCE AND CURRENT OF THE ORIENTAL HORNET SILK COCOON CAP , 1990 .

[21]  S. Buys Last instar larva of Penepodium dubium (Hymenoptera: Sphecidae). , 2001, Revista de biologia tropical.

[22]  H. Hepburn,et al.  THE COMBS OF HONEYBEES AS COMPOSITE MATERIALS , 1988 .

[23]  F. Ruttner,et al.  Thermoregulation im Hornissennest , 1971, Zeitschrift für vergleichende Physiologie.

[24]  E. Atkins A four-strand coiled-coil model for some insect fibrous proteins☆ , 1967 .

[25]  T. Sutherland,et al.  Insect silk: one name, many materials. , 2010, Annual review of entomology.

[26]  J. Ishay,et al.  Thermoelectric effect in hornet (Vespa orientalis) silk and thermoregulation in a hornet's nest , 1995 .

[27]  J. Ishay Die thermoregulation im Hornisen-nest , 1971 .

[28]  Jianxiang Wang,et al.  Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs , 2010, Proceedings of the National Academy of Sciences.

[29]  J. Church,et al.  Honeybee silk: recombinant protein production, assembly and fiber spinning. , 2010, Biomaterials.

[30]  S. Taboga,et al.  Silk formation mechanisms in the larval salivary glands ofApis mellifera (Hymenoptera: Apidae) , 2003, Journal of Biosciences.

[31]  J. Warwicker Comparative studies of fibroins. II. The crystal structures of various fibroins. , 1960, Journal of molecular biology.

[32]  Y. Tamada,et al.  Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk. , 2009, International journal of biological macromolecules.

[33]  Jun Wang,et al.  Genomic Comparison of the Ants Camponotus floridanus and Harpegnathos saltator , 2010, Science.

[34]  E. Silva-Zacarin,et al.  Macromolecular array patterns of silk gland secretion in social Hymenoptera larvae. , 2004, Genetics and molecular research : GMR.

[35]  W. Kenchington,et al.  Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). , 1967, Journal. Royal Microscopical Society.

[36]  S. Jay The Cocoon of the Honey Bee, Apis mellifera L. , 1964, The Canadian Entomologist.

[37]  J. Church,et al.  An unlikely silk: the composite material of green lacewing cocoons. , 2008, Biomacromolecules.

[38]  H. Sezutsu,et al.  Drawing-induced changes in morphology and mechanical properties of hornet silk gel films. , 2010, Biomacromolecules.

[39]  T. Sutherland,et al.  A highly divergent gene cluster in honey bees encodes a novel silk family. , 2006, Genome research.

[40]  J. Ishay,et al.  Hornet silk: thermophysical properties , 2002 .

[41]  J. Ishay,et al.  Comb cells and puparial silk in the oriental hornet nest: Structure and function , 1990, Journal of morphology.