Introducing titanium hydride on porous transport layer for more energy efficient water electrolysis with proton exchange membrane

[1]  Hyun-Seok Cho,et al.  Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis , 2022, Journal of Power Sources.

[2]  Z. Shao,et al.  Low precious metal loading porous transport layer coating and anode catalyst layer for proton exchange membrane water electrolysis , 2022, International Journal of Hydrogen Energy.

[3]  K. Wippermann,et al.  Constructing a Multifunctional Interface between Membrane and Porous Transport Layer for Water Electrolyzers. , 2021, ACS applied materials & interfaces.

[4]  T. Morawietz,et al.  Exploring the Interface of Skin‐Layered Titanium Fibers for Electrochemical Water Splitting , 2021, Advanced Energy Materials.

[5]  N. Briguglio,et al.  Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells , 2020, Journal of Power Sources.

[6]  Detlef Stolten,et al.  Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers , 2019, International Journal of Hydrogen Energy.

[7]  D. Stolten,et al.  PEM water electrolysis: Innovative approaches towards catalyst separation, recovery and recycling , 2019, International Journal of Hydrogen Energy.

[8]  James L. Young,et al.  Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers , 2018, Electrochemistry Communications.

[9]  N. Briguglio,et al.  Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis , 2018, Materials.

[10]  Detlef Stolten,et al.  The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers , 2018, Electrochimica Acta.

[11]  K. Sundmacher,et al.  Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation , 2018, Journal of Applied Electrochemistry.

[12]  Kai Sundmacher,et al.  Effect of the MEA design on the performance of PEMWE single cells with different sizes , 2018, Journal of Applied Electrochemistry.

[13]  Scott T. Retterer,et al.  Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells , 2017 .

[14]  Uwe Reimer,et al.  An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis , 2016 .

[15]  T. Morawietz,et al.  Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities , 2016 .

[16]  Karel Bouzek,et al.  Membrane electrolysis—History, current status and perspective , 2016 .

[17]  Pierre Millet,et al.  Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells , 2014 .

[18]  K. Bouzek,et al.  Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst , 2014 .

[19]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[20]  Claude Etievant,et al.  Electrochemical performances of PEM water electrolysis cells and perspectives , 2011 .

[21]  S. Yamanaka,et al.  Electrical and thermal properties of titanium hydrides , 2006 .

[22]  D. Eliezer,et al.  The hydrogen embrittlement of titanium-based alloys , 2005 .

[23]  Jiann-Kuo Wu,et al.  Effects of electrolytic hydrogenating parameters on structure and composition of surface hydrides of CP-Ti and Ti–6Al–4V alloy , 2002 .

[24]  T. Pajkossy,et al.  On the origin of capacitance dispersion of rough electrodes , 2000 .

[25]  T. Pajkossy,et al.  Impedance of rough capacitive electrodes : the role of surface disorder , 1998 .

[26]  D. Devilliers,et al.  Structure and composition of passive titanium oxide films , 1997 .

[27]  M. Givon,et al.  The electrochemical formation of titanium hydride , 1982 .

[28]  R. G. Breckenridge,et al.  Electrical properties of titanium dioxide semiconductors , 1950 .