Development and Applications of CRISPR-Cas 9 for Genome Engineering

Patrick D. Hsu,1,2,3 Eric S. Lander,1 and Feng Zhang1,2,* 1Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02141, USA 2McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA *Correspondence: zhang@broadinstitute.org http://dx.doi.org/10.1016/j.cell.2014.05.010

[1]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[2]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[3]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[4]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[5]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[6]  Adam James Waite,et al.  An improved zinc-finger nuclease architecture for highly specific genome editing , 2007, Nature Biotechnology.

[7]  Ronnie J Winfrey,et al.  Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. , 2008, Molecular cell.

[8]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[9]  Alexander Pertsemlidis,et al.  Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9 , 2005, Nature Genetics.

[10]  Shiraz A. Shah,et al.  Protospacer recognition motifs Mixed identities and functional diversity , 2013 .

[11]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[12]  Miroslav Radman,et al.  Reassembly of shattered chromosomes in Deinococcus radiodurans , 2006, Nature.

[13]  George H. Silva,et al.  Comprehensive analysis of the specificity of transcription activator-like effector nucleases , 2014, Nucleic acids research.

[14]  Anirvan Ghosh,et al.  Increased Brain Penetration and Potency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle , 2014, Neuron.

[15]  Jörg Vogel,et al.  Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. , 2013, Molecular cell.

[16]  M. Rowicka,et al.  Nucleotide-resolution DNA double-strand breaks mapping by next-generation sequencing , 2013, Nature Methods.

[17]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[18]  B. González,et al.  Modular system for the construction of zinc-finger libraries and proteins , 2010, Nature Protocols.

[19]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[20]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[21]  Lei Wang,et al.  Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos , 2014, Cell.

[22]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[23]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[24]  Luke A. Gilbert,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2013, Cell.

[25]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[26]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[27]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[28]  Jeffrey C. Miller,et al.  Highly efficient endogenous human gene correction using designed zinc-finger nucleases , 2005, Nature.

[29]  Kira S. Makarova,et al.  Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems , 2013, Nucleic acids research.

[30]  Erik J. Sontheimer,et al.  Self vs. non-self discrimination during CRISPR RNA-directed immunity , 2009, Nature.

[31]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[32]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[33]  H. Ackermann,et al.  Streptococcus thermophilus bacteriophages. , 2010 .

[34]  Luigi Naldini,et al.  Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery , 2007, Nature Biotechnology.

[35]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[36]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[37]  B. Dujon,et al.  Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[38]  Dana Carroll,et al.  Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases , 2001, Molecular and Cellular Biology.

[39]  A. Hüttenhofer,et al.  Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[41]  Joshua R. Elmore,et al.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. , 2012, Molecular cell.

[42]  J. Haber,et al.  Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. , 1989, Genetics.

[43]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[44]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[45]  Dana Carroll,et al.  Enhancing Gene Targeting with Designed Zinc Finger Nucleases , 2003, Science.

[46]  Hans Clevers,et al.  Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. , 2013, Cell stem cell.

[47]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[48]  Jonathan C. Cohen,et al.  Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. , 2010, The New England journal of medicine.

[49]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[50]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[51]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[52]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[53]  Wei Tang,et al.  Correction of a genetic disease in mouse via use of CRISPR-Cas9. , 2013, Cell stem cell.

[54]  Hao Yin,et al.  Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype , 2014, Nature Biotechnology.

[55]  Feng Zhang,et al.  Selection-Free Zinc-Finger Nuclease Engineering by Context-Dependent Assembly (CoDA) , 2010, Nature Methods.

[56]  J. Joung,et al.  Locus-specific editing of histone modifications at endogenous enhancers using programmable TALE-LSD1 fusions , 2013, Nature Biotechnology.

[57]  P. Rouet,et al.  Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. , 1994, Molecular and cellular biology.

[58]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[59]  C. Barbas,et al.  Positive and negative regulation of endogenous genes by designed transcription factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[61]  처치 죠지엠.,et al.  Orthogonal cas9 proteins for rna-guided gene regulation and editing , 2014 .

[62]  K. Makino,et al.  Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product , 1987, Journal of bacteriology.

[63]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[64]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[65]  Jennifer A. Doudna,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[66]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[67]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[68]  G Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[69]  T. Gajewski,et al.  Cancer immunotherapy , 2012, Molecular oncology.

[70]  M. Capecchi,et al.  Altering the genome by homologous recombination. , 1989, Science.

[71]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[72]  Wei-Ting Hwang,et al.  Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. , 2014, The New England journal of medicine.

[73]  Jennifer A. Doudna,et al.  DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 , 2014, Nature.

[74]  Eugene V Koonin,et al.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems , 2011, Biology Direct.

[75]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[76]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[77]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[78]  Jeffry D Sander,et al.  Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins , 2013, Nature Biotechnology.

[79]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[80]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[81]  Philippe Horvath,et al.  The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli , 2011, Nucleic acids research.

[82]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[83]  D. Solter,et al.  Timely translation during the mouse oocyte-to-embryo transition. , 2000, Development.

[84]  F. J. Mojica,et al.  Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria , 2000, Molecular microbiology.

[85]  Dana Carroll,et al.  Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. , 2002, Genetics.

[86]  U. Schopfer,et al.  Chemically Regulated Zinc Finger Transcription Factors* , 2000, The Journal of Biological Chemistry.

[87]  B. Dujon,et al.  Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. , 1992, Genetics.

[88]  G. Dianov,et al.  Mammalian Base Excision Repair: the Forgotten Archangel , 2013, Nucleic acids research.

[89]  Erin L. Doyle,et al.  Targeting DNA Double-Strand Breaks with TAL Effector Nucleases , 2010, Genetics.

[90]  Emmanuelle Charpentier,et al.  The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems , 2013, RNA biology.

[91]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[92]  Qi Zhou,et al.  Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems , 2013, Nature Biotechnology.

[93]  T. Bestor,et al.  Cytosine methylation targetted to pre-determined sequences , 1997, Nature Genetics.

[94]  P. Duchateau,et al.  A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences , 2006, Nucleic acids research.

[95]  Philippe Horvath,et al.  Comparative analysis of CRISPR loci in lactic acid bacteria genomes. , 2009, International journal of food microbiology.

[96]  Jeffrey C. Miller,et al.  An unbiased genome-wide analysis of zinc-finger nuclease specificity , 2011, Nature Biotechnology.

[97]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.