Electronic structure and phase stability of In-free photovoltaic semiconductors, Cu 2 ZnSnSe 4 and Cu 2 ZnSnS 4 by first-principles calculation

We have theoretically evaluated the phase stability and electronic structure of Cu 2 ZnSnSe 4 (CZTSe) and Cu 2 ZnSnS 4 (CZTS). The enthalpies of formation for kesterite, stannite and wurtz-stannite phases of CZTSe and CZTS were calculated using a plane-wave pseudopotential method within the density functional formalism. For CZTSe, the calculated formation enthalpy (Δ H ) of the kesterite phase (−312.7 kJ/mol) is a little smaller than that of the stannite phase (−311.3 kJ/mol) and much smaller than that of the wurtz-stannite phase (−305.7 kJ/mol). For CZTS, the Δ H of the kesterite phase (−361.9 kJ/mol) is smaller than that of the stannite phase (−359.9 kJ/mol) and much smaller than that of the wurtz-stannite phase (−354.6 kJ/mol). The difference of Δ H between the kesterite and stannite phases for CZTS is greater than that for CZTSe. This indicates the kesterite phase is more stable than the stannite phase in CZTS compared with CZTSe. The valence band maximums (VBMs) of both the kesterite- and stannite-type CZTSe(CZTS) are antibonding orbitals of Cu 3d and Se 4p (S 3p). The conduction band minimums (CBMs) are antibonding orbitals of Sn 5s and Se 4p (S 3p). The Zn atom does not affect the VBM or the CBM in either CZTSe(CZTS). The theoretical band gap of the kesterite phase calculated with sX-LDA in both CZTSe and CZTS is a little wider than that of the wurtz-stannite phase and much wider than that of the stannite phase.