Three-dimensional conditional random field for the dermal–epidermal junction segmentation

Abstract. The segmentation of the dermal–epidermal junction (DEJ) in in vivo confocal images represents a challenging task due to uncertainty in visual labeling and complex dependencies between skin layers. We propose a method to segment the DEJ surface, which combines random forest classification with spatial regularization based on a three-dimensional conditional random field (CRF) to improve the classification robustness. The CRF regularization introduces spatial constraints consistent with skin anatomy and its biological behavior. We propose to specify the interaction potentials between pixels according to their depth and their relative position to each other to model skin biological properties. The proposed approach adds regularity to the classification by prohibiting inconsistent transitions between skin layers. As a result, it improves the sensitivity and specificity of the classification results.

[1]  Sven Behnke,et al.  Learning depth-sensitive conditional random fields for semantic segmentation of RGB-D images , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[2]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[3]  Andrew McCallum,et al.  Information extraction from research papers using conditional random fields , 2006, Inf. Process. Manag..

[4]  Seyed-Ahmad Ahmadi,et al.  Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields , 2016, MICCAI.

[5]  Jennifer G. Dy,et al.  Delineation of Skin Strata in Reflectance Confocal Microscopy Images using Recurrent Convolutional Networks with Toeplitz Attention , 2017, ArXiv.

[6]  Jennifer G. Dy,et al.  Delineation of Skin Strata in Reflectance Confocal Microscopy Images with Recurrent Convolutional Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Jaime G. Carbonell,et al.  Protein Fold Recognition Using Segmentation Conditional Random Fields (SCRFs) , 2006, J. Comput. Biol..

[9]  Luc Van Gool,et al.  Deep Retinal Image Understanding , 2016, MICCAI.

[10]  R. Zemel,et al.  Multiscale conditional random fields for image labeling , 2004, CVPR 2004.

[11]  William E. Higgins,et al.  Efficient Gabor filter design for texture segmentation , 1996, Pattern Recognit..

[12]  Hugues Talbot,et al.  Automated quantification of the epidermal aging process using in-vivo confocal microscopy , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[13]  Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011 - 14th International Conference, Toronto, Canada, September 18-22, 2011, Proceedings, Part III , 2011, MICCAI.

[14]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  J. Robic,et al.  Automated characterization of skin aging using in vivo confocal microscopy , 2018 .

[16]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[17]  Giovanni Pellacani,et al.  Reflectance Confocal Microscopy for In Vivo Skin Imaging † , 2008, Photochemistry and photobiology.

[18]  R. Webb,et al.  In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. , 1995, The Journal of investigative dermatology.

[19]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[20]  Stefan Bauer,et al.  Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization , 2011, MICCAI.

[21]  Oliver Kramer,et al.  Iterated local search with Powell’s method: a memetic algorithm for continuous global optimization , 2010, Memetic Comput..

[22]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[23]  Martial Hebert,et al.  Discriminative Random Fields , 2006, International Journal of Computer Vision.

[24]  R. Lavker,et al.  Aged skin: a study by light, transmission electron, and scanning electron microscopy. , 1987, The Journal of investigative dermatology.

[25]  Jennifer G. Dy,et al.  A machine learning method for identifying morphological patterns in reflectance confocal microscopy mosaics of melanocytic skin lesions in-vivo , 2016, SPIE BiOS.

[26]  Giovanni Pellacani,et al.  Skin aging: in vivo microscopic assessment of epidermal and dermal changes by means of confocal microscopy. , 2013, Journal of the American Academy of Dermatology.

[27]  Hugues Talbot,et al.  Classification of the dermal-epidermal junction using in-vivo confocal microscopy , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[28]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  Anil K. Jain,et al.  Object detection using gabor filters , 1997, Pattern Recognit..

[30]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[31]  Kristin J. Dana,et al.  Hybrid deep learning for Reflectance Confocal Microscopy skin images , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[32]  Gabriela Oana Cula,et al.  Automatic Localization of Skin Layers in Reflectance Confocal Microscopy , 2014, ICIAR.

[33]  Jennifer G. Dy,et al.  Automated delineation of dermal-epidermal junction in reflectance confocal microscopy image stacks of human skin. , 2015, The Journal of investigative dermatology.

[34]  Samuel C Hames,et al.  Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks , 2016, PloS one.

[35]  Michael I. Jordan,et al.  A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin , 2017, IEEE Transactions on Image Processing.

[36]  G. Fisher,et al.  Natural and sun-induced aging of human skin. , 2015, Cold Spring Harbor perspectives in medicine.

[37]  Giovanni Pellacani,et al.  Proposal for an in vivo histopathologic scoring system for skin aging by means of confocal microscopy , 2013, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[38]  Mohamed S. Kamel,et al.  Image Analysis and Recognition , 2014, Lecture Notes in Computer Science.

[39]  T. Fitzpatrick The validity and practicality of sun-reactive skin types I through VI. , 1988, Archives of dermatology.

[40]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.