Diagnosis and exploration of massively univariate neuroimaging models

The goal of this work is to establish the validity of neuroimaging models and inferences through diagnosis and exploratory data analysis. While model diagnosis and exploration are integral parts of any statistical modeling enterprise, these aspects have been mostly neglected in functional neuroimaging. We present methods that make diagnosis and exploration of neuroimaging data feasible. We use three- and one-dimensional summaries that characterize the model fit and the four-dimensional residuals. The statistical tools are diagnostic summary statistics with tractable null distributions and the dynamic graphical tools which allow the exploration of multiple summaries in both spatial and temporal/interscan aspects, with the ability to quickly jump to spatiotemporal detail. We apply our methods to a fMRI data set, demonstrating their ability to localize subtle artifacts and to discover systematic experimental variation not captured by the model.

[1]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[2]  Jean-Baptiste Poline,et al.  Multivariate Model Specification for fMRI Data , 2002, NeuroImage.

[3]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[4]  Thomas J. Grabowski,et al.  The source of residual temporal autocorrelation in fMRI time series , 2001, NeuroImage.

[5]  Karl J. Friston,et al.  Generalisability, Random Effects & Population Inference , 1998, NeuroImage.

[6]  M. Stephens Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .

[7]  W. R. Buckland,et al.  Outliers in Statistical Data , 1979 .

[8]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[9]  Ewald Moser,et al.  Explorative signal processing in functional MR imaging , 1999, Int. J. Imaging Syst. Technol..

[10]  Thomas E. Nichols,et al.  Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  Rand R. Wilcox,et al.  Trimming and Winsorization , 2005 .

[12]  Karl J. Friston,et al.  Functional MRI , 1997 .

[13]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[14]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[15]  S. Shapiro,et al.  A Comparative Study of Various Tests for Normality , 1968 .

[16]  M. D’Esposito,et al.  The Inferential Impact of Global Signal Covariates in Functional Neuroimaging Analyses , 1998, NeuroImage.

[17]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[18]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[19]  F. Mosteller,et al.  Understanding robust and exploratory data analysis , 1985 .

[20]  Michael Stuart,et al.  Understanding Robust and Exploratory Data Analysis , 1984 .

[21]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[22]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[23]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[24]  Andrew P. Holmes,et al.  Statistical issues in functional brain mapping. , 1994 .

[25]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[26]  R W Cox,et al.  Magnetic field changes in the human brain due to swallowing or speaking , 1998, Magnetic resonance in medicine.

[27]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[28]  Thomas P. Ryan,et al.  Modern Regression Methods , 1996 .

[29]  J. Royston An Extension of Shapiro and Wilk's W Test for Normality to Large Samples , 1982 .

[30]  J. Hartigan Distribution Problems in Clustering , 1977 .

[31]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[32]  Thomas E. Nichols,et al.  Data exploration through model diagnosis , 2001, NeuroImage.

[33]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .