Diagnosis and exploration of massively univariate neuroimaging models
暂无分享,去创建一个
[1] Karl J. Friston,et al. Voxel-Based Morphometry—The Methods , 2000, NeuroImage.
[2] Jean-Baptiste Poline,et al. Multivariate Model Specification for fMRI Data , 2002, NeuroImage.
[3] Karl J. Friston,et al. Statistical parametric maps in functional imaging: A general linear approach , 1994 .
[4] Thomas J. Grabowski,et al. The source of residual temporal autocorrelation in fMRI time series , 2001, NeuroImage.
[5] Karl J. Friston,et al. Generalisability, Random Effects & Population Inference , 1998, NeuroImage.
[6] M. Stephens. Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics without Extensive Tables , 1970 .
[7] W. R. Buckland,et al. Outliers in Statistical Data , 1979 .
[8] Michael H. Kutner. Applied Linear Statistical Models , 1974 .
[9] Ewald Moser,et al. Explorative signal processing in functional MR imaging , 1999, Int. J. Imaging Syst. Technol..
[10] Thomas E. Nichols,et al. Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[11] Rand R. Wilcox,et al. Trimming and Winsorization , 2005 .
[12] Karl J. Friston,et al. Functional MRI , 1997 .
[13] S. Weisberg,et al. Diagnostics for heteroscedasticity in regression , 1983 .
[14] A M Dale,et al. Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.
[15] S. Shapiro,et al. A Comparative Study of Various Tests for Normality , 1968 .
[16] M. D’Esposito,et al. The Inferential Impact of Global Signal Covariates in Functional Neuroimaging Analyses , 1998, NeuroImage.
[17] M. Braga,et al. Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[18] Stephen M. Smith,et al. Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.
[19] F. Mosteller,et al. Understanding robust and exploratory data analysis , 1985 .
[20] Michael Stuart,et al. Understanding Robust and Exploratory Data Analysis , 1984 .
[21] V. Barnett,et al. Applied Linear Statistical Models , 1975 .
[22] S Makeig,et al. Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.
[23] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[24] Andrew P. Holmes,et al. Statistical issues in functional brain mapping. , 1994 .
[25] L. K. Hansen,et al. On Clustering fMRI Time Series , 1999, NeuroImage.
[26] R W Cox,et al. Magnetic field changes in the human brain due to swallowing or speaking , 1998, Magnetic resonance in medicine.
[27] Richard F. Gunst,et al. Applied Regression Analysis , 1999, Technometrics.
[28] Thomas P. Ryan,et al. Modern Regression Methods , 1996 .
[29] J. Royston. An Extension of Shapiro and Wilk's W Test for Normality to Large Samples , 1982 .
[30] J. Hartigan. Distribution Problems in Clustering , 1977 .
[31] M. Stephens. EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .
[32] Thomas E. Nichols,et al. Data exploration through model diagnosis , 2001, NeuroImage.
[33] N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .