Model Checking Propositional Projection Temporal Logic Based on SPIN

This paper investigates a model checking algorithm for Propositional Projection Temporal Logic (PPTL) with finite models. To this end, a PPTL formula is transformed to a Normal Form Graph (NFG), and then a Nondeterministic Finite Automaton (NFA). The NFA precisely characterizes the finite models satisfying the corresponding formula and can be equivalently represented as a Deterministic Finite Automaton (DFA). When the system to be verified can be modeled as a DFA As, and the property of the system can be specified by a PPTL formula P, then ¬P can be transformed to a DFA Ap. Thus, whether the system satisfies the property or not can be checked by computing the product automaton of As and Ap, and then checking whether or not the product automaton accepts the empty word. Further, this method can be implemented by means of the verification system SPIN.

[1]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[2]  Stephan Merz,et al.  Model Checking: A Tutorial Overview , 2000, MOVEP.

[3]  Zhenhua Duan,et al.  Decidability of Propositional Projection Temporal Logic with Infinite Models , 2007, TAMC.

[4]  Li Zhang,et al.  A decision procedure for propositional projection temporal logic with infinite models , 2008, Acta Informatica.

[5]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[6]  Ben C. Moszkowski,et al.  An Automata-Theoretic Completeness Proof for Interval Temporal Logic , 2000, ICALP.

[7]  Amir Pnueli,et al.  A Choppy Logic , 1986, LICS.

[8]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[9]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[11]  Roger M. Needham,et al.  Using encryption for authentication in large networks of computers , 1978, CACM.

[12]  Maciej Koutny,et al.  Semantics of Framed Temporal Logic Programs , 2005, ICLP.

[13]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[14]  Bruno Dutertre,et al.  Complete proof systems for first order interval temporal logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[15]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[16]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  Zhenhua Duan,et al.  An extended interval temporal logic and a framing technique for temporal logic programming , 1996 .

[19]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[20]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[21]  Gavin Lowe,et al.  Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR , 1996, Softw. Concepts Tools.

[22]  D UllmanJeffrey,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001 .

[23]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[24]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.