Adaptive Multiobjective Particle Swarm Optimization Based on Parallel Cell Coordinate System

Managing convergence and diversity is essential in the design of multiobjective particle swarm optimization (MOPSO) in search of an accurate and well distributed approximation of the true Pareto-optimal front. Largely due to its fast convergence, particle swarm optimization incurs a rapid loss of diversity during the evolutionary process. Many mechanisms have been proposed in existing MOPSOs in terms of leader selection, archive maintenance, and perturbation to tackle this deficiency. However, few MOPSOs are designed to dynamically adjust the balance in exploration and exploitation according to the feedback information detected from the evolutionary environment. In this paper, a novel method, named parallel cell coordinate system (PCCS), is proposed to assess the evolutionary environment including density, rank, and diversity indicators based on the measurements of parallel cell distance, potential, and distribution entropy, respectively. Based on PCCS, strategies proposed for selecting global best and personal best, maintaining archive, adjusting flight parameters, and perturbing stagnation are integrated into a self-adaptive MOPSO (pccsAMOPSO). The comparative experimental results show that the proposed pccsAMOPSO outperforms the other eight state-of-the-art competitors on ZDT and DTLZ test suites in terms of the chosen performance metrics. An additional experiment for density estimation in MOPSO illustrates that the performance of PCCS is superior to that of adaptive grid and crowding distance in terms of convergence and diversity.

[1]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[2]  Gary G. Yen,et al.  Ranking many-objective Evolutionary Algorithms using performance metrics ensemble , 2013, 2013 IEEE Congress on Evolutionary Computation.

[3]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[4]  Carlos A. Coello Coello,et al.  Ranking Methods for Many-Objective Optimization , 2009, MICAI.

[5]  Maurice Clerc,et al.  MO-TRIBES, an adaptive multiobjective particle swarm optimization algorithm , 2011, Comput. Optim. Appl..

[6]  G. J. Mitchell,et al.  Principles and procedures of statistics: A biometrical approach , 1981 .

[7]  M Reyes Sierra,et al.  Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art , 2006 .

[8]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[9]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[11]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems , 2006, Int. J. Intell. Syst..

[12]  Jürgen Branke,et al.  Empirical comparison of MOPSO methods - Guide selection and diversity preservation - , 2009, 2009 IEEE Congress on Evolutionary Computation.

[13]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[14]  Nikhil Padhye Topology optimization of compliant mechanism using multi-objective particle swarm optimization , 2008, GECCO '08.

[15]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  Wenjun Zhang,et al.  Dissipative particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[18]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[19]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[20]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[21]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[22]  Gary G. Yen,et al.  Constrained Multiple-Swarm Particle Swarm Optimization Within a Cultural Framework , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[23]  Jiao Li-cheng,et al.  Intelligent particle swarm optimization in multiobjective optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[24]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[27]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[28]  Mohammad Ali Abido,et al.  Multiobjective particle swarm optimization with nondominated local and global sets , 2010, Natural Computing.

[29]  Xiaodong Li,et al.  Better Spread and Convergence: Particle Swarm Multiobjective Optimization Using the Maximin Fitness Function , 2004, GECCO.

[30]  Lily Rachmawati,et al.  Dynamic resizing for grid-based archiving in evolutionary multi objective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[31]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[32]  Gary G. Yen,et al.  Performance Metric Ensemble for Multiobjective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[33]  Carlos A. Coello Coello,et al.  Evolutionary multiobjective optimization using a cultural algorithm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[34]  Gary G. Yen,et al.  Cultural-based particle swarm for dynamic optimisation problems , 2012, Int. J. Syst. Sci..

[35]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[36]  Gary G. Yen,et al.  Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[37]  James H. Torrie,et al.  Principles and procedures of statistics: a biometrical approach (2nd ed) , 1980 .

[38]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[39]  Shiu Yin Yuen,et al.  A Multiobjective Evolutionary Algorithm That Diversifies Population by Its Density , 2012, IEEE Transactions on Evolutionary Computation.

[40]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[41]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[42]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[43]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[44]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[45]  Gary G. Yen,et al.  A Culture-Based Particle Swarm Optimization Framework for Dynamic, Constrained Multi-Objective Optimization , 2012, Int. J. Swarm Intell. Res..

[46]  Qinghai Bai,et al.  Analysis of Particle Swarm Optimization Algorithm , 2010, Comput. Inf. Sci..

[47]  A. Anushya,et al.  An analysis of particle swarm optimization for feature selection on medical data , 2017, 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS).

[48]  Gary G. Yen,et al.  Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation , 2003, IEEE Trans. Evol. Comput..

[49]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[50]  J. Fieldsend Multi-Objective Particle Swarm Optimisation Methods , 2004 .

[51]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[52]  Jürgen Branke,et al.  About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization , 2006, PPSN.

[53]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[54]  Richard C. Chapman,et al.  Application of Particle Swarm to Multiobjective Optimization , 1999 .

[55]  John A. W. McCall,et al.  A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition , 2010, PPSN.

[56]  Wang Hu,et al.  Density estimation for selecting leaders and mantaining archive in MOPSO , 2013, 2013 IEEE Congress on Evolutionary Computation.

[57]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[58]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[59]  J. Rowe,et al.  Particle SwarmOptimization andFitness Sharing tosolve Multi-Objective Optimization Problems , 2005 .

[60]  Saúl Zapotecas Martínez,et al.  A multi-objective particle swarm optimizer based on decomposition , 2011, GECCO '11.

[61]  Gary G. Yen,et al.  Cultural-Based Multiobjective Particle Swarm Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[62]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[63]  Nikhil Padhye Comparison of archiving methods in multi-objectiveparticle swarm optimization (MOPSO): empirical study , 2009, GECCO '09.

[64]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[65]  Jun Zhang,et al.  Adaptive Particle Swarm Optimization , 2008, ANTS Conference.

[66]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[67]  Qingfu Zhang,et al.  A decomposition-based multi-objective Particle Swarm Optimization algorithm for continuous optimization problems , 2008, 2008 IEEE International Conference on Granular Computing.

[68]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[69]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[70]  Gary G. Yen,et al.  Rank-density-based multiobjective genetic algorithm and benchmark test function study , 2003, IEEE Trans. Evol. Comput..