Reduced-Order Observer-Based Point-to-Point and Trajectory Controllers for Robot Manipulators

This paper presents a design procedure for a reduced-order observer-based controller dedicated to n-joint robot manipulators. It is assumed that only the joint angular positions are measured. The joint angular velocities are estimated via an exponential reduced-order observer. Two types of control laws based on this observer are studied: point-to-point control with gravity compensation and trajectory control. Sufficient conditions to ensure the closed-loop stability are given. Performances of the reduced-order observer used with these two control laws are illustrated in a simulation study of a two-degrees-of-freedom robot manipulator.