Subwavelength interference of light on structured surfaces

This paper presents a review of the subwavelength interference effects of light in structured surfaces. Starting from the anomalous interference in simple structures such as double nanoslits, thin films, and catenary apertures, the theories and applications of light–matter interaction in layered, periodic, and aperiodic subwavelength structures are discussed. Two basic platforms, i.e., Young’s double slits and the Fabry–Perot cavity, are used as prototypes for the investigation of the complex interference of surface waves. It is shown that these novel phenomena could dramatically reduce the characteristic lengths of functional devices and increase the resolution of optical imaging. By engineering the dispersion of surface waves, broadband responses beyond traditional limits in both temporal and spatial regimes have been demonstrated. As a final remark, the current challenges and future trends of subwavelength interference engineering are addressed.

[1]  J. Teng,et al.  Hybrid bilayer plasmonic metasurface efficiently manipulates visible light , 2016, Science Advances.

[2]  Yuang Wang,et al.  Lasing and anti-lasing in a single cavity , 2016, Nature Photonics.

[3]  R. Wood,et al.  On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum , 1902 .

[4]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[5]  Changtao Wang,et al.  Subwavelength imaging by metallic slab lens with nanoslits , 2007 .

[6]  Young's interference of double metallic nanoslit with different widths. , 2007, Optics express.

[7]  Chunlei Guo,et al.  Colorizing metals with femtosecond laser pulses , 2008 .

[8]  Xiaoliang Ma,et al.  All‐Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions , 2017 .

[9]  Yongtian Wang,et al.  Spin and wavelength multiplexed nonlinear metasurface holography , 2016, Nature Communications.

[10]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[11]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[12]  Xiaoliang Ma,et al.  Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion , 2015, Scientific Reports.

[13]  P. Nordlander,et al.  Plasmonic focusing in symmetry broken nanocorrals. , 2011, Nano letters.

[14]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[15]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[16]  Federico Capasso,et al.  Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. , 2017, Physical review letters.

[17]  Minghui Hong,et al.  Orbital Angular Momentum Multiplexing and Demultiplexing by a Single Metasurface , 2017 .

[18]  Wilhelm Woltersdorff,et al.  Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot , 1934 .

[19]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[20]  P. Belov,et al.  Controlling light with plasmonic multilayers , 2014 .

[21]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[22]  Federico Capasso,et al.  Holographic detection of the orbital angular momentum of light with plasmonic photodiodes , 2012, Nature Communications.

[23]  Changtao Wang,et al.  Dual-band asymmetry chiral metamaterial based on planar spiral structure , 2012 .

[24]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[25]  Zeyu Zhao,et al.  Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection , 2015, Scientific Reports.

[26]  Y. Prior,et al.  Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces , 2015, Nature communications.

[27]  Zeyu Zhao,et al.  High‐Efficiency and Wide‐Angle Beam Steering Based on Catenary Optical Fields in Ultrathin Metalens , 2018, Advanced Optical Materials.

[28]  Yuri S. Kivshar,et al.  Colloquium : Nonlinear metamaterials , 2014 .

[29]  Daniel Wintz,et al.  Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[30]  Svend-Age Biehs,et al.  Hyperbolic metamaterials as an analog of a blackbody in the near field. , 2011, Physical review letters.

[31]  N. Litchinitser,et al.  Spinning light on the nanoscale. , 2014, Nano letters.

[32]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[33]  Changtao Wang,et al.  Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth. , 2016, Nanoscale.

[34]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[35]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[36]  Baile Zhang,et al.  Delay-bandwidth and delay-loss limitations for cloaking of large objects. , 2010, Physical review letters.

[37]  Ting Xu,et al.  Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial , 2014, Nature Communications.

[38]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[39]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[40]  Zubin Jacob,et al.  Broadband super-planckian thermal emission from hyperbolic metamaterials , 2013, CLEO: 2013.

[41]  T. Jiang,et al.  Manipulating electromagnetic wave polarizations by anisotropic metamaterials. , 2007, Physical review letters.

[42]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[43]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[44]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[45]  M. Shimizu,et al.  Unidirectional radiative heat transfer with a spectrally selective planar absorber/emitter for high-efficiency solar thermophotovoltaic systems , 2016 .

[46]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[47]  Y. Wang,et al.  Photonic Spin Hall Effect at Metasurfaces , 2013, Science.

[48]  Federico Capasso,et al.  Nanometre optical coatings based on strong interference effects in highly absorbing media. , 2013, Nature materials.

[49]  Lei Wang,et al.  Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms , 2016, 1602.00755.

[50]  A. W. Lohmann,et al.  Computer-generated binary holograms , 1969 .

[51]  Yonghao Cui,et al.  Giant chiral optical response from a twisted-arc metamaterial. , 2014, Nano letters.

[52]  D. Tsai,et al.  Directed subwavelength imaging using a layered metal-dielectric system , 2006, physics/0608170.

[53]  Yu-Hui Chen,et al.  Wavefront shaping of infrared light through a subwavelength hole , 2012, Light: Science & Applications.

[54]  Xiang Zhang,et al.  Plasmonic Luneburg and Eaton lenses. , 2011, Nature nanotechnology.

[55]  Xiangang Luo,et al.  Subwavelength photolithography based on surface-plasmon polariton resonance. , 2004, Optics express.

[56]  Kishan Dholakia,et al.  Optical micromanipulation. , 2008, Chemical Society reviews.

[57]  P. Belov,et al.  Tuning of near‐ and far‐field properties of all‐dielectric dimer nanoantennas via ultrafast electron‐hole plasma photoexcitation , 2016, 1606.05199.

[58]  Hui Liu,et al.  Flexible coherent control of plasmonic spin-Hall effect , 2015, Nature Communications.

[59]  Yonghao Cui,et al.  Nonlinear Imaging and Spectroscopy of Chiral Metamaterials , 2014, Advanced materials.

[60]  Kieffer J. Davieau,et al.  Effect of quantum interference on absorption of light in metamaterial hybrids , 2016 .

[61]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[62]  Harry A. Atwater The promise of plasmonics. , 2007 .

[63]  E. E. Narimanov,et al.  The left hand of brightness: past, present and future of negative index materials , 2006, Nature materials.

[64]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[65]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[66]  G. Nordin,et al.  Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. , 1999, Optics express.

[67]  Kai Chen,et al.  Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers , 2015 .

[68]  Wei Pan,et al.  Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion , 2016, Scientific Reports.

[69]  Gaokun Yu,et al.  Acoustic superlens using Helmholtz-resonator-based metamaterials , 2015 .

[70]  Xiaoliang Ma,et al.  Color display and encryption with a plasmonic polarizing metamirror , 2017 .

[71]  Xiaoliang Ma,et al.  Catenary nanostructures as compact Bessel beam generators , 2016, Scientific Reports.

[72]  Changtao Wang,et al.  Actively Tunable Structural Color Rendering with Tensile Substrate , 2017 .

[73]  Harald Giessen,et al.  Two-photon direct laser writing of ultracompact multi-lens objectives , 2016, Nature Photonics.

[74]  Zsolt Szabó,et al.  Aberration-free flat lens design for a wide range of incident angles , 2016 .

[75]  L. Robinson,et al.  Meander-line polarizer , 1973 .

[76]  B. Chambers,et al.  The phase-switched screen , 2004, IEEE Antennas and Propagation Magazine.

[77]  Federico Capasso,et al.  Broadband and chiral binary dielectric meta-holograms , 2016, Science Advances.

[78]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[79]  Mark L Brongersma,et al.  Surface plasmon polariton analogue to Young's double-slit experiment. , 2007, Nature nanotechnology.

[80]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[81]  Shuqi Chen,et al.  Phase Manipulation of Electromagnetic Waves with Metasurfaces and Its Applications in Nanophotonics , 2018 .

[82]  G Anzolin,et al.  Overcoming the rayleigh criterion limit with optical vortices. , 2006, Physical review letters.

[83]  Morten Willatzen,et al.  Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. , 2011, Optics letters.

[84]  Xiaoliang Ma,et al.  Multi-band circular polarizer using planar spiral metamaterial structure. , 2012, Optics express.

[85]  Federico Capasso,et al.  Ultracompact metasurface in-line polarimeter , 2016 .

[86]  D. Tsai,et al.  Landau Damping and Limit to Field Confinement and Enhancement in Plasmonic Dimers , 2017 .

[87]  Changtao Wang,et al.  Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes , 2016, Scientific Reports.

[88]  Fan Yang,et al.  Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs , 2014, IEEE Transactions on Antennas and Propagation.

[89]  Hongbo Sun The mystical interlinks: Mechanics, religion or optics? , 2015 .

[90]  Robert W. Boyd,et al.  Quantum lithography: status of the field , 2012, Quantum Inf. Process..

[91]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[92]  Zeyu Zhao,et al.  Super-resolution imaging with a Bessel lens realized by a geometric metasurface. , 2017, Optics express.

[93]  Wei Li,et al.  Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode , 2016, Scientific Reports.

[94]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[95]  Changtao Wang,et al.  Surface imaging microscopy with tunable penetration depth as short as 20 nm by employing hyperbolic metamaterials , 2018 .

[96]  Changtao Wang,et al.  A method for uniform demagnification imaging beyond the diffraction limit: cascaded planar hyperlens , 2014 .

[97]  W. Wen,et al.  Perfect electromagnetic absorption at one-atom-thick scale , 2015 .

[98]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[99]  S. Tretyakov,et al.  Metasurfaces: From microwaves to visible , 2016 .

[100]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[101]  Wenbo Pan,et al.  Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror , 2016, Scientific Reports.

[102]  Houtong Chen,et al.  Simultaneous Control of Light Polarization and Phase Distributions Using Plasmonic Metasurfaces , 2015 .

[103]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[104]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[105]  Mingbo Pu,et al.  Engineering the dispersion of metamaterial surface for broadband infrared absorption. , 2012, Optics letters.

[106]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[107]  Xiaoliang Ma,et al.  Achromatic flat optical components via compensation between structure and material dispersions , 2016, Scientific Reports.

[108]  Philippe Lalanne,et al.  High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms , 1998 .

[109]  Y. Wang,et al.  An ultrathin invisibility skin cloak for visible light , 2015, Science.

[110]  Xiaodong Yang,et al.  Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces. , 2016, Nano letters.

[111]  Jinghua Teng,et al.  Ultrahigh-capacity non-periodic photon sieves operating in visible light , 2015, Nature Communications.

[112]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[113]  Federico Capasso,et al.  Meta-Lens Doublet in the Visible Region. , 2017, Nano letters.

[114]  Daniel Maystre,et al.  The total absorption of light by a diffraction grating , 1976 .

[115]  Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation , 2014, 1406.1847.

[116]  Changtao Wang,et al.  Batch Fabrication of Metasurface Holograms Enabled by Plasmonic Cavity Lithography , 2017 .

[117]  Jinghua Teng,et al.  Optimization‐free superoscillatory lens using phase and amplitude masks , 2014 .

[118]  R. Blaikie,et al.  Genetic algorithm optimization of grating coupled near-field interference lithography systems at extreme numerical apertures , 2017 .

[119]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[120]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[121]  Lijuan Xie,et al.  High-performance terahertz wave absorbers made of silicon-based metamaterials , 2015 .

[122]  Ann Roberts,et al.  Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. , 2010, Nano letters.

[123]  Yadong Xu,et al.  Planar gradient metamaterials , 2016 .

[124]  Jinghua Teng,et al.  Twisted Focusing of Optical Vortices with Broadband Flat Spiral Zone Plates , 2014 .

[125]  X. Wan,et al.  Simultaneous controls of surface waves and propagating waves by metasurfaces , 2014 .

[126]  Harald Giessen,et al.  Imaging and Steering Unidirectional Emission from Nanoantenna Array Metasurfaces , 2016 .

[127]  I. Brener,et al.  High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces , 2014, 1405.5038.

[128]  F. Gori Measuring Stokes parameters by means of a polarization grating. , 1999, Optics letters.

[129]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[130]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[131]  Changtao Wang,et al.  Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. , 2008, Optics express.

[132]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[133]  R. Blaikie,et al.  Herpin effective media resonant underlayers and resonant overlayer designs for ultra-high NA interference lithography. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[134]  Min Gu,et al.  On-chip noninterference angular momentum multiplexing of broadband light , 2016, Science.

[135]  A. Tennant,et al.  A single-layer tuneable microwave absorber using an active FSS , 2004, IEEE Microwave and Wireless Components Letters.

[136]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[137]  L. Jay Guo,et al.  High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography , 2011 .

[138]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[139]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[140]  F. Liu,et al.  Two-surface-plasmon-polariton-absorption based nanolithography , 2013 .

[141]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[142]  Byoungho Lee,et al.  A double‐lined metasurface for plasmonic complex‐field generation , 2016 .

[143]  Svend-Age Biehs,et al.  Hyperbolic metamaterials as an analog of a blackbody in the near field. , 2011, Physical review letters.

[144]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[145]  Zhaowei Liu,et al.  Broad band two-dimensional manipulation of surface plasmons. , 2009, Nano letters.

[146]  Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials , 2014, 1404.4707.

[147]  Jingbo Sun,et al.  Experimental Demonstration of Demagnifying Hyperlens. , 2016, Nano letters.

[148]  Changtao Wang,et al.  Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films , 2013 .

[149]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[150]  Zhaowei Liu,et al.  Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. , 2010, Nature communications.

[151]  Manipulation of surface plasmon polaritons by phase modulation of incident light. , 2011, Optics express.

[152]  R. Gordon RAPID COMMUNICATION: Near-field interference in a subwavelength double slit in a perfect conductor , 2006 .

[153]  Xiaoliang Ma,et al.  Single‐layer circular polarizer using metamaterial and its application in antenna , 2012 .

[154]  Yi Cui,et al.  Metamaterial mirrors in optoelectronic devices. , 2014, Nature nanotechnology.

[155]  Mingsheng Zhang,et al.  High Contrast Superlens Lithography Engineered by Loss Reduction , 2012 .

[156]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[157]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[158]  A. Lakhtakia,et al.  Biologically inspired achromatic waveplates for visible light. , 2011, Nature communications.

[159]  Federico Capasso,et al.  Arbitrary spin-to–orbital angular momentum conversion of light , 2017, Science.

[160]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[161]  Jun Luo,et al.  [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures , 2018 .

[162]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[163]  Yuri S. Kivshar,et al.  Functional and nonlinear optical metasurfaces , 2015 .

[164]  Xiaoliang Ma,et al.  Multicolor 3D meta-holography by broadband plasmonic modulation , 2016, Science Advances.

[165]  Shen-ge Wang,et al.  Continuous color reflective displays using interferometric absorption , 2015 .

[166]  Din Ping Tsai,et al.  Advances in optical metasurfaces: fabrication and applications [Invited]. , 2018, Optics express.

[167]  Mark L Brongersma,et al.  Introductory lecture: nanoplasmonics. , 2015, Faraday discussions.

[168]  Bo Han Chen,et al.  Integrated Resonant Unit of Metasurfaces for Broadband Efficiency and Phase Manipulation , 2018 .

[169]  E. Yablonovitch Photonic crystals: semiconductors of light. , 2001, Scientific American.

[170]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[171]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[172]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[173]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[174]  Changtao Wang,et al.  Dynamic manipulation of polarization states using anisotropic meta-surface , 2014 .

[175]  N. Engheta,et al.  Thin absorbing screens using metamaterial surfaces , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[176]  H. Ming,et al.  Beam manipulating by metallic nano-optic lens containing nonlinear media. , 2007, Optics express.

[177]  Harald Giessen,et al.  Chiral plasmonics , 2017, Science Advances.

[178]  Xiang Zhang,et al.  Surface plasmon interference nanolithography. , 2005, Nano letters.

[179]  A. Kildishev,et al.  Holey-metal lenses: sieving single modes with proper phases. , 2013, Nano letters.

[180]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[181]  Xiangang Luo,et al.  A Beam Steering Horn Antenna Using Active Frequency Selective Surface , 2013, IEEE Transactions on Antennas and Propagation.

[182]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[183]  G. Si,et al.  Plasmonic nano‐slits assisted polarization selective detour phase meta‐hologram , 2016 .

[184]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[185]  Linzhi Wu,et al.  Invisible Sensors: Simultaneous Sensing and Camouflaging in Multiphysical Fields. , 2015, Advanced materials.

[186]  A.G. Fox,et al.  An Adjustable Wave-Guide Phase Changer , 1947, Proceedings of the IRE.

[187]  João Valente,et al.  Two-dimensional control of light with light on metasurfaces , 2016, Light: Science & Applications.

[188]  Federico Capasso,et al.  The future and promise of flat optics: a personal perspective , 2018, nano Online.

[189]  Xiangang Luo,et al.  Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. , 2018, Optics express.

[190]  Sergei A. Tretyakov,et al.  Thin absorbing structure for all incidence angles based on the use of a high‐impedance surface , 2003 .

[191]  F. Dinelli,et al.  Revealing the flexoelectricity in the mixed-phase regions of epitaxial BiFeO3 thin films , 2015, Scientific Reports.

[192]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[193]  Zhaowei Liu,et al.  A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm , 2009 .

[194]  P. Chavel,et al.  High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm. , 1998, Optics letters.

[195]  J. Pendry A Chiral Route to Negative Refraction , 2004, Science.

[196]  Direct method to control surface plasmon polaritons on metal surfaces. , 2014, Optics letters.

[197]  S. Barnett,et al.  Detection of a Spinning Object Using Light’s Orbital Angular Momentum , 2013, Science.

[198]  J. Y. Lau,et al.  Reconfigurable Transmitarray Design Approaches for Beamforming Applications , 2012, IEEE Transactions on Antennas and Propagation.

[199]  Xian-Zi Dong,et al.  Three‐dimensional Luneburg lens at optical frequencies , 2016 .

[200]  Xiaoliang Ma,et al.  Dynamic Control of the Extraordinary Optical Scattering in Semicontinuous 2D Metamaterials , 2016 .

[201]  M. Pu,et al.  Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film , 2012, Plasmonics.

[202]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[203]  R. L. Johnson,et al.  Sharper images by focusing soft X-rays with photon sieves , 2001, Nature.

[204]  Junqiang Sun,et al.  Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface. , 2017, Optics express.

[205]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[206]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[207]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[208]  Nikolay I Zheludev,et al.  What diffraction limit? , 2008, Nature materials.

[209]  Changtao Wang,et al.  Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing , 2015 .

[210]  Yudong Zhang,et al.  Super-resolution optical telescopes with local light diffraction shrinkage , 2015, Scientific Reports.

[211]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[212]  M. J. Brett,et al.  Chiral sculptured thin films , 1996, Nature.

[213]  V. Fusco,et al.  Design of Engineered Reflectors for Radar Cross Section Modification , 2013, IEEE Transactions on Antennas and Propagation.

[214]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[215]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[216]  Xiaoliang Ma,et al.  Catenary optics for achromatic generation of perfect optical angular momentum , 2015, Science Advances.

[217]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[218]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[219]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[220]  Changtao Wang,et al.  Directional excitation of surface plasmons with subwavelength slits , 2008 .

[221]  Jianjun Yang,et al.  New effects in an ultracompact Young's double nanoslit with plasmon hybridization , 2013 .

[222]  Erez Hasman,et al.  Coriolis effect in optics: unified geometric phase and spin-Hall effect. , 2008, Physical review letters.

[223]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[224]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[225]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[226]  Din Ping Tsai,et al.  Breaking optical diffraction limitation using optical Hybrid-Super-Hyperlens with radially polarized light. , 2013, Optics express.

[227]  José A. Encinar,et al.  Broadband design of three-layer printed reflectarrays , 2003 .

[228]  D. Flanders Submicrometer periodicity gratings as artificial anisotropic dielectrics , 1983 .

[229]  Changtao Wang,et al.  Squeezing Bulk Plasmon Polaritons through Hyperbolic Metamaterials for Large Area Deep Subwavelength Interference Lithography , 2015 .

[230]  Zeyu Zhao,et al.  Realizing near-perfect absorption at visible frequencies. , 2009, Optics express.

[231]  B. A. Munk,et al.  On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence , 2007, IEEE Transactions on Antennas and Propagation.

[232]  Changtao Wang,et al.  Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials , 2017 .

[233]  Changtao Wang,et al.  Investigation of Fano resonance in planar metamaterial with perturbed periodicity. , 2013, Optics express.

[234]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[235]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[236]  Din Ping Tsai,et al.  Metalenses: Advances and Applications , 2018, Advanced Optical Materials.

[237]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[238]  Fei Ding,et al.  Gradient metasurfaces: a review of fundamentals and applications , 2017, Reports on progress in physics. Physical Society.

[239]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[240]  G. Lerosey,et al.  Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials , 2015, Nature.

[241]  Zhaowei Liu,et al.  Ray optics at a deep-subwavelength scale: a transformation optics approach. , 2008, Nano letters.

[242]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[243]  Sergey I. Bozhevolnyi,et al.  Beam-Size-Invariant Spectropolarimeters Using Gap-Plasmon Metasurfaces , 2017, 1704.08915.

[244]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[245]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[246]  Zi-Lan Deng,et al.  Wide-angled off-axis achromatic metasurfaces for visible light. , 2016, Optics express.

[247]  Light transmission through two slits: the Young experiment revisited , 2006 .

[248]  Mohsen Rahmani,et al.  Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion , 2015, Nature Communications.

[249]  Joshua M. Pearce,et al.  Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics , 2014, Scientific Reports.

[250]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[251]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[252]  Fang Liu,et al.  Integrated Cherenkov radiation emitter eliminating the electron velocity threshold , 2017, Nature Photonics.

[253]  Gennady Shvets,et al.  Design of metamaterial surfaces with broadband absorbance. , 2011, Optics letters.

[254]  Xiaoliang Ma,et al.  Dispersion engineering in metamaterials and metasurfaces , 2018 .

[255]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[256]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[257]  Ady Arie,et al.  Surface‐plasmon wavefront and spectral shaping by near‐field holography , 2016 .

[258]  Zeyu Zhao,et al.  Merging Geometric Phase and Plasmon Retardation Phase in Continuously Shaped Metasurfaces for Arbitrary Orbital Angular Momentum Generation , 2016 .

[259]  Changtao Wang,et al.  Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer , 2016 .

[260]  Guixin Li,et al.  University of Birmingham Continuous control of the nonlinearity phase for harmonic generations , 2015 .

[261]  Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. , 2006, Physical review letters.

[262]  Minghui Hong,et al.  Engineering the Phase Front of Light with Phase-Change Material Based Planar lenses , 2015, Scientific Reports.

[263]  Hui Cao,et al.  Broadband subwavelength focusing of light using a passive sink. , 2013, Optics express.

[264]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[265]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[266]  Xiangang Luo,et al.  Conversion of broadband energy to narrowband emission through double-sided metamaterials. , 2013, Optics express.

[267]  Changtao Wang,et al.  Achromatic Broadband Super‐Resolution Imaging by Super‐Oscillatory Metasurface , 2018, Laser & Photonics Reviews.

[268]  Xiangang Luo,et al.  Merging plasmonics and metamaterials by two-dimensional subwavelength structures , 2017 .

[269]  Wei Zhang,et al.  Negative and Positive Impact of Roughness and Loss on Subwavelength Imaging for Superlens Structures , 2014, Plasmonics.

[270]  M. Hong,et al.  Breaking the diffraction limit in far field by planar metalens , 2017 .

[271]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[272]  S. Kou,et al.  Mode-matching metasurfaces: coherent reconstruction and multiplexing of surface waves , 2014, Scientific Reports.

[273]  Alexander V Kildishev,et al.  Optically active metasurface with non-chiral plasmonic nanoantennas. , 2014, Nano letters.

[274]  Erez Hasman,et al.  Photonic spin-controlled multifunctional shared-aperture antenna array , 2016, Science.

[275]  Seokho Yun,et al.  Near-ideal optical metamaterial absorbers with super-octave bandwidth. , 2014, ACS nano.

[276]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[277]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[278]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[279]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[280]  Nathan J. Dawson,et al.  Coherent perfect rotation , 2012, 1202.3886.

[281]  Robert P Crease,et al.  The most beautiful experiment... , 2002 .

[282]  Xiaoliang Ma,et al.  Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. , 2017, Optics express.

[283]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[284]  E. Eliel,et al.  Plasmon-assisted two-slit transmission: Young's experiment revisited. , 2005, Physical review letters.

[285]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[286]  Xiaoliang Ma,et al.  Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation , 2013 .

[287]  S. Wereley,et al.  Single-image far-field subdiffraction limit imaging with axicon. , 2013, Optics letters.

[288]  L. Mandel,et al.  Coherence Properties of Optical Fields , 1965 .

[289]  Xiaoliang Ma,et al.  Multispectral optical metasurfaces enabled by achromatic phase transition , 2015, Scientific Reports.

[290]  Xiaobo Yin,et al.  Experimental demonstration of an acoustic magnifying hyperlens. , 2009, Nature materials.

[291]  J. Durnin Exact solutions for nondiffracting beams. I. The scalar theory , 1987 .

[292]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[293]  Junjie Li,et al.  Metasurface Enabled Wide‐Angle Fourier Lens , 2018, Advanced materials.

[294]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[295]  Zeyu Zhao,et al.  Engineering heavily doped silicon for broadband absorber in the terahertz regime. , 2012, Optics express.

[296]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[297]  Changtao Wang,et al.  Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns , 2009 .

[298]  Xiaoliang Ma,et al.  Ultra-broadband large-scale infrared perfect absorber with optical transparency , 2017 .

[299]  Changtao Wang,et al.  Plasmonic beam deflector. , 2008, Optics express.

[300]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[301]  Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases. , 2016, Nanoscale.

[302]  A Kazemzadeh,et al.  Nonmagnetic Ultrawideband Absorber With Optimal Thickness , 2011, IEEE Transactions on Antennas and Propagation.

[303]  Xiangang Luo,et al.  Plasmonic Metasurfaces for Simultaneous Thermal Infrared Invisibility and Holographic Illusion , 2018 .

[304]  M Gu,et al.  Circular dichroism in biological photonic crystals and cubic chiral nets. , 2011, Physical review letters.

[305]  Din Ping Tsai,et al.  Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. , 2017, Nano letters.

[306]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[307]  David R. Smith,et al.  Planar, flattened Luneburg lens at infrared wavelengths. , 2012, Optics express.

[308]  M. Pu,et al.  Broadband spin Hall effect of light in single nanoapertures , 2017, Light: Science & Applications.

[309]  Xiaoliang Ma,et al.  Revisitation of Extraordinary Young’s Interference: from Catenary Optical Fields to Spin–Orbit Interaction in Metasurfaces , 2018, ACS Photonics.

[310]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[311]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[312]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[313]  Xiaoliang Ma,et al.  Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. , 2012, Optics express.

[314]  M. Wegener,et al.  Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. , 2015, Optics letters.

[315]  Rajendra Bhandari,et al.  Polarization of light and topological phases , 1997 .

[316]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[317]  Ruey-Shi Chu,et al.  Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence , 1987 .

[318]  S. Maier,et al.  Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. , 2014, Small.

[319]  Mohsen Rahmani,et al.  Fano resonance in novel plasmonic nanostructures , 2013 .

[320]  Honglin Yu,et al.  Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography , 2015 .

[321]  Erez Hasman,et al.  Optical spin Hall effects in plasmonic chains. , 2011, Nano letters.

[322]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[323]  Vladimir M. Shalaev,et al.  Ultra-thin, planar, Babinet-inverted plasmonic metalenses , 2013, Light: Science & Applications.

[324]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[325]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[326]  G. Lerosey,et al.  Focusing Beyond the Diffraction Limit with Far-Field Time Reversal , 2007, Science.

[327]  Changtao Wang,et al.  Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens , 2015 .

[328]  L. Deng,et al.  Adjustable wideband reflective converter based on cut-wire metasurface , 2015 .

[329]  Zhen Tian,et al.  Broadband Terahertz Wave Deflection Based on C‐shape Complex Metamaterials with Phase Discontinuities , 2013, Advanced materials.

[330]  Changtao Wang,et al.  Design principles for infrared wide-angle perfect absorber based on plasmonic structure. , 2011, Optics express.

[331]  Qian Wang,et al.  Tunable and reconfigurable metasurfaces and metadevices , 2018 .

[332]  Metasurface wave in planar nano-photonics , 2016 .

[333]  Hyok J. Song,et al.  Two-dimensional beam steering using an electrically tunable impedance surface , 2003 .

[334]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[335]  W. Sichak,et al.  Microwave High-Speed Continuous Phase Shifter , 1955, Proceedings of the IRE.

[336]  Bruno Crosignani,et al.  Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections , 2000 .

[337]  Xian-shu Luo Plasmonic metalens for nanofabrication , 2018 .

[338]  Tie Jun Cui,et al.  Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces , 2014 .

[339]  Yidong Chong,et al.  Time-Reversed Lasing and Interferometric Control of Absorption , 2011, Science.

[340]  Federico Capasso,et al.  Aberrations of flat lenses and aplanatic metasurfaces. , 2013, Optics express.

[341]  J. Silcox,et al.  Measurement of surface-plasmon dispersion in oxidized aluminum films , 1975 .

[342]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[343]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[344]  Changtao Wang,et al.  Strong enhancement of light absorption and highly directive thermal emission in graphene. , 2013, Optics express.

[345]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[346]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[347]  Ting Xu,et al.  All-angle negative refraction and active flat lensing of ultraviolet light , 2013, Nature.

[348]  G. Lerosey,et al.  Controlling the phase and amplitude of plasmon sources at a subwavelength scale. , 2009, Nano letters.

[349]  You Zhe Ho,et al.  Optical Hybrid-Superlens Hyperlens for Superresolution Imaging , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[350]  Nikolay I. Zheludev,et al.  Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging , 2013 .

[351]  Lin Chen,et al.  A polarization-independent broadband terahertz absorber , 2014 .

[352]  Xianyu Ao,et al.  Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[353]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature Materials.

[354]  M. Kats,et al.  Optical absorbers based on strong interference in ultra‐thin films , 2016, 1606.05707.

[355]  Xiangang Luo,et al.  Principles of electromagnetic waves in metasurfaces , 2015 .

[356]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[357]  Ji Zhou,et al.  An extremely broad band metamaterial absorber based on destructive interference. , 2011, Optics express.

[358]  Shanhui Fan,et al.  Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody , 2015, Proceedings of the National Academy of Sciences.

[359]  Feng Huang,et al.  Experimental observation of classical subwavelength interference with a pseudothermal light source. , 2005, Physical review letters.

[360]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[361]  K. Rozanov Ultimate thickness to bandwidth ratio of radar absorbers , 2000 .

[362]  Yongtian Wang,et al.  Athermally photoreduced graphene oxides for three-dimensional holographic images , 2015, Nature Communications.

[363]  Xian-shu Luo Subwavelength Optical Engineering with Metasurface Waves , 2018 .

[364]  Changtao Wang,et al.  Subwavelength Demagnification Imaging and Lithography Using Hyperlens with a Plasmonic Reflector Layer , 2013, Plasmonics.

[365]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[366]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[367]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[368]  Changtao Wang,et al.  Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination , 2015, Scientific Reports.

[369]  Xiaoliang Ma,et al.  Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping , 2015, Scientific Reports.

[370]  Xiangang Luo,et al.  Using Reconfigurable Transmitarray to Achieve Beam-Steering and Polarization Manipulation Applications , 2015, IEEE Transactions on Antennas and Propagation.

[371]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[372]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[373]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[374]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[375]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[376]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.