Curves and Surfaces Construction Based on New Basis with Exponential Functions

By incorporating two exponential functions into the cubic Bernstein basis functions, a new class of λμ-Bernstein basis functions is constructed. Based on these λμ-Bernstein basis functions, a kind of λμ-Bézier-like curve with two shape parameters, which include the cubic Bernstein-Bézier curve, is proposed. The C1 and C2 continuous conditions for joining two λμ-Bézier-like curves are given. By using tensor product method, a class of rectangular Bézier-like patches with four shape parameters is shown. The G1 and G2 continuous conditions for joining two rectangular Bézier-like patches are derived. By incorporating three exponential functions into the cubic Bernstein basis functions over triangular domain, a new class of λμη-Bernstein basis functions over triangular domain is also constructed. Based on the λμη-Bernstein basis functions, a kind of triangular λμη-Bézier-like patch with three shape parameters, which include the triangular Bernstein-Bézier cubic patch, is presented. The conditions for G1 continuous smooth joining two triangular λμη-Bézier-like patches are discussed. The shape parameters serve as tension parameters and have a predictable adjusting role on the curves and patches.

[1]  Juan Manuel Peña,et al.  Total positivity and optimal bases , 1996 .

[2]  Larry L. Schumaker On hyperbolic splines , 1983 .

[3]  Yuanpeng Zhu,et al.  Curve construction based on five trigonometric blending functions , 2012 .

[4]  Marie-Laurence Mazure,et al.  On a general new class of quasi Chebyshevian splines , 2011, Numerical Algorithms.

[5]  Xi-An Han,et al.  Shape analysis of cubic trigonometric Bézier curves with a shape parameter , 2010, Appl. Math. Comput..

[6]  Xi-An Han,et al.  The cubic trigonometric Bézier curve with two shape parameters , 2009, Appl. Math. Lett..

[7]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[8]  Imre Juhász,et al.  On the quartic curve of Han , 2009 .

[9]  Brian A. Barsky,et al.  Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.

[10]  Lanlan Yan,et al.  A class of algebraic-trigonometric blended splines , 2011, J. Comput. Appl. Math..

[11]  Carla Manni,et al.  On discrete hyperbolic tension splines , 1999, Adv. Comput. Math..

[12]  Carla Manni,et al.  Geometric construction of spline curves with tension properties , 2003, Comput. Aided Geom. Des..

[13]  Xiao-Ming Zeng,et al.  Bézier curves and surfaces with shape parameters , 2009, Int. J. Comput. Math..

[14]  Dinesh Manocha,et al.  Detecting cusps and inflection points in curves , 1992, Comput. Aided Geom. Des..

[15]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[17]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[18]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[19]  Charles A. Micchelli,et al.  Total positivity and its applications , 1996 .

[20]  Jiwen Zhang C-curves: an extension of cubic curves , 1996 .

[21]  Francesca Pelosi,et al.  New spline spaces with generalized tension properties , 2008 .

[22]  Juan Manuel Peña,et al.  A general class of Bernstein-like bases , 2007, Comput. Math. Appl..

[23]  J. M. Aldaz,et al.  Bernstein Operators for Exponential Polynomials , 2008, 0805.1618.

[24]  Tom Lyche,et al.  Total positivity and the existence of piecewise exponential B-splines , 2006, Adv. Comput. Math..

[25]  Marie-Laurence Mazure,et al.  Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines , 2001, Comput. Aided Geom. Des..

[26]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[27]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[28]  Carla Manni,et al.  Polynomial cubic splines with tension properties , 2010, Comput. Aided Geom. Des..

[29]  Michael Unser,et al.  Exponential splines and minimal-support bases for curve representation , 2012, Comput. Aided Geom. Des..

[30]  John A. Gregory,et al.  A rational cubic spline with tension , 1990, Comput. Aided Geom. Des..

[31]  Xuli Han,et al.  A class of general quartic spline curves with shape parameters , 2011, Comput. Aided Geom. Des..

[32]  Marie-Laurence Mazure,et al.  Mixed hyperbolic/trigonometric spaces for design , 2012, Comput. Math. Appl..

[33]  G. Baszenski,et al.  Computer graphics and geometric modelling using beta-splines: B A Barsky Springer, Berlin, FRG (1988) 156 pp DM78 , 1989 .

[34]  Xuli Han,et al.  Cubic trigonometric polynomial curves with a shape parameter , 2004, Comput. Aided Geom. Des..

[35]  Xiaocong Han,et al.  A novel generalization of Bézier curve and surface , 2008 .

[36]  Wang Guozhao,et al.  An extension of Bernstein-Bézier surface over the triangular domain , 2007 .

[37]  J. M. Peña,et al.  Optimal bases for a class of mixed spaces and their associated spline spaces , 2010, Comput. Math. Appl..

[38]  Huaiyu Zhang,et al.  Unifying C-curves and H-curves by extending the calculation to complex numbers , 2005, Comput. Aided Geom. Des..

[39]  Xuli Han,et al.  Quadratic trigonometric polynomial curves with a shape parameter , 2002, Comput. Aided Geom. Des..

[40]  Xuli Han,et al.  Piecewise quartic polynomial curves with a local shape parameter , 2006 .

[41]  Tae-wan Kim,et al.  A shape-preserving approximation by weighted cubic splines , 2012, J. Comput. Appl. Math..

[42]  Lanlan Yan,et al.  An extension of the Bézier model , 2011, Appl. Math. Comput..

[43]  Guozhao Wang,et al.  A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..

[44]  David Salomon The Computer Graphics Manual , 2011, Texts in Computer Science.