Curves and Surfaces Construction Based on New Basis with Exponential Functions
暂无分享,去创建一个
[1] Juan Manuel Peña,et al. Total positivity and optimal bases , 1996 .
[2] Larry L. Schumaker. On hyperbolic splines , 1983 .
[3] Yuanpeng Zhu,et al. Curve construction based on five trigonometric blending functions , 2012 .
[4] Marie-Laurence Mazure,et al. On a general new class of quasi Chebyshevian splines , 2011, Numerical Algorithms.
[5] Xi-An Han,et al. Shape analysis of cubic trigonometric Bézier curves with a shape parameter , 2010, Appl. Math. Comput..
[6] Xi-An Han,et al. The cubic trigonometric Bézier curve with two shape parameters , 2009, Appl. Math. Lett..
[7] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[8] Imre Juhász,et al. On the quartic curve of Han , 2009 .
[9] Brian A. Barsky,et al. Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.
[10] Lanlan Yan,et al. A class of algebraic-trigonometric blended splines , 2011, J. Comput. Appl. Math..
[11] Carla Manni,et al. On discrete hyperbolic tension splines , 1999, Adv. Comput. Math..
[12] Carla Manni,et al. Geometric construction of spline curves with tension properties , 2003, Comput. Aided Geom. Des..
[13] Xiao-Ming Zeng,et al. Bézier curves and surfaces with shape parameters , 2009, Int. J. Comput. Math..
[14] Dinesh Manocha,et al. Detecting cusps and inflection points in curves , 1992, Comput. Aided Geom. Des..
[15] Paolo Costantini,et al. Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..
[16] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[17] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[18] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[19] Charles A. Micchelli,et al. Total positivity and its applications , 1996 .
[20] Jiwen Zhang. C-curves: an extension of cubic curves , 1996 .
[21] Francesca Pelosi,et al. New spline spaces with generalized tension properties , 2008 .
[22] Juan Manuel Peña,et al. A general class of Bernstein-like bases , 2007, Comput. Math. Appl..
[23] J. M. Aldaz,et al. Bernstein Operators for Exponential Polynomials , 2008, 0805.1618.
[24] Tom Lyche,et al. Total positivity and the existence of piecewise exponential B-splines , 2006, Adv. Comput. Math..
[25] Marie-Laurence Mazure,et al. Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines , 2001, Comput. Aided Geom. Des..
[26] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[27] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[28] Carla Manni,et al. Polynomial cubic splines with tension properties , 2010, Comput. Aided Geom. Des..
[29] Michael Unser,et al. Exponential splines and minimal-support bases for curve representation , 2012, Comput. Aided Geom. Des..
[30] John A. Gregory,et al. A rational cubic spline with tension , 1990, Comput. Aided Geom. Des..
[31] Xuli Han,et al. A class of general quartic spline curves with shape parameters , 2011, Comput. Aided Geom. Des..
[32] Marie-Laurence Mazure,et al. Mixed hyperbolic/trigonometric spaces for design , 2012, Comput. Math. Appl..
[33] G. Baszenski,et al. Computer graphics and geometric modelling using beta-splines: B A Barsky Springer, Berlin, FRG (1988) 156 pp DM78 , 1989 .
[34] Xuli Han,et al. Cubic trigonometric polynomial curves with a shape parameter , 2004, Comput. Aided Geom. Des..
[35] Xiaocong Han,et al. A novel generalization of Bézier curve and surface , 2008 .
[36] Wang Guozhao,et al. An extension of Bernstein-Bézier surface over the triangular domain , 2007 .
[37] J. M. Peña,et al. Optimal bases for a class of mixed spaces and their associated spline spaces , 2010, Comput. Math. Appl..
[38] Huaiyu Zhang,et al. Unifying C-curves and H-curves by extending the calculation to complex numbers , 2005, Comput. Aided Geom. Des..
[39] Xuli Han,et al. Quadratic trigonometric polynomial curves with a shape parameter , 2002, Comput. Aided Geom. Des..
[40] Xuli Han,et al. Piecewise quartic polynomial curves with a local shape parameter , 2006 .
[41] Tae-wan Kim,et al. A shape-preserving approximation by weighted cubic splines , 2012, J. Comput. Appl. Math..
[42] Lanlan Yan,et al. An extension of the Bézier model , 2011, Appl. Math. Comput..
[43] Guozhao Wang,et al. A class of Bézier-like curves , 2003, Comput. Aided Geom. Des..
[44] David Salomon. The Computer Graphics Manual , 2011, Texts in Computer Science.