High performance algorithms for Toeplitz and block Toeplitz matrices
暂无分享,去创建一个
[1] Michael A. Stewart,et al. Stability Issues in the Factorization of Structured Matrices , 1997, SIAM J. Matrix Anal. Appl..
[2] Marlis Hochbruck,et al. Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems , 1995 .
[3] Ali H. Sayed,et al. A Look-Ahead Block Schur Algorithm for Toeplitz-Like Matrices , 1995, SIAM J. Matrix Anal. Appl..
[4] P. Saylor,et al. A modified direct preconditioner for indefinite symmetric Toeplitz systems , 1992, Numer. Linear Algebra Appl..
[5] K. Abromeit. Music Received , 2023, Notes.
[6] Georg Heinig,et al. Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .
[7] IL USAgallivan,et al. A Block Toeplitz Look-ahead Schur Algorithm , 1995 .
[8] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..
[9] T. Kailath,et al. Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .
[10] Paul Van Dooren,et al. On solving block Toeplitz matrices using a block Schur algorithm , 1994 .
[11] Thomas Kailath,et al. Fast Triangular Factorization and Inversion of Hermitian, Toeplitz, and Related Matrices with Arbitrary Rank Profile , 1993, SIAM J. Matrix Anal. Appl..
[12] Roland W. Freund,et al. Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Teoplitz systems , 1993 .
[13] S. Cabay,et al. A Weakly Stable Algorithm for Padé Approximants and the Inversion of Hankel Matrices , 1993, SIAM J. Matrix Anal. Appl..
[14] Per Christian Hansen,et al. FORTRAN subroutines for general Toeplitz systems , 1992, TOMS.
[15] Beresford N. Parlett,et al. Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..
[16] Per Christian Hansen,et al. A Look-Ahead Levinson Algorithm for Indefinite Toeplitz Systems , 1992, SIAM J. Matrix Anal. Appl..
[17] Ali H. Sayed,et al. Fast algorithms for generalized displacement structures , 1991 .
[18] G. Cybenko,et al. Hyperbolic Householder algorithms for factoring structured matrices , 1990 .
[19] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[20] Charles M. Rader,et al. Hyperbolic householder transforms , 1988 .
[21] The Cholesky Factorization, Schur Complements, Correlation Coefficients, Angles between Vectors, and the QR Factorization. , 1988 .
[22] T. Kailath,et al. Fast Parallel Algorithms for QR and Triangular Factorization , 1987 .
[23] Charles M. Rader,et al. Hyperbolic householder transformations , 1986, IEEE Trans. Acoust. Speech Signal Process..
[24] Willard Miller,et al. The IMA volumes in mathematics and its applications , 1986 .
[25] Christian H. Bischof,et al. The WY representation for products of householder matrices , 1985, PPSC.
[26] V. V. Voevodin,et al. TOEPLITZ package users' guide , 1983 .
[27] G. Golub. Matrix computations , 1983 .
[28] M. Morf,et al. Displacement ranks of matrices and linear equations , 1979 .
[29] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[30] J. Schur,et al. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .