High performance algorithms for Toeplitz and block Toeplitz matrices

[1]  Michael A. Stewart,et al.  Stability Issues in the Factorization of Structured Matrices , 1997, SIAM J. Matrix Anal. Appl..

[2]  Marlis Hochbruck,et al.  Look-ahead Levinson and Schur algorithms for non-Hermitian Toeplitz systems , 1995 .

[3]  Ali H. Sayed,et al.  A Look-Ahead Block Schur Algorithm for Toeplitz-Like Matrices , 1995, SIAM J. Matrix Anal. Appl..

[4]  P. Saylor,et al.  A modified direct preconditioner for indefinite symmetric Toeplitz systems , 1992, Numer. Linear Algebra Appl..

[5]  K. Abromeit Music Received , 2023, Notes.

[6]  Georg Heinig,et al.  Inversion of generalized Cauchy matrices and other classes of structured matrices , 1995 .

[7]  IL USAgallivan,et al.  A Block Toeplitz Look-ahead Schur Algorithm , 1995 .

[8]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..

[9]  T. Kailath,et al.  Generalized Displacement Structure for Block-Toeplitz,Toeplitz-Block, and Toeplitz-Derived Matrices , 1994 .

[10]  Paul Van Dooren,et al.  On solving block Toeplitz matrices using a block Schur algorithm , 1994 .

[11]  Thomas Kailath,et al.  Fast Triangular Factorization and Inversion of Hermitian, Toeplitz, and Related Matrices with Arbitrary Rank Profile , 1993, SIAM J. Matrix Anal. Appl..

[12]  Roland W. Freund,et al.  Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Teoplitz systems , 1993 .

[13]  S. Cabay,et al.  A Weakly Stable Algorithm for Padé Approximants and the Inversion of Hankel Matrices , 1993, SIAM J. Matrix Anal. Appl..

[14]  Per Christian Hansen,et al.  FORTRAN subroutines for general Toeplitz systems , 1992, TOMS.

[15]  Beresford N. Parlett,et al.  Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..

[16]  Per Christian Hansen,et al.  A Look-Ahead Levinson Algorithm for Indefinite Toeplitz Systems , 1992, SIAM J. Matrix Anal. Appl..

[17]  Ali H. Sayed,et al.  Fast algorithms for generalized displacement structures , 1991 .

[18]  G. Cybenko,et al.  Hyperbolic Householder algorithms for factoring structured matrices , 1990 .

[19]  C. Loan,et al.  A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .

[20]  Charles M. Rader,et al.  Hyperbolic householder transforms , 1988 .

[21]  The Cholesky Factorization, Schur Complements, Correlation Coefficients, Angles between Vectors, and the QR Factorization. , 1988 .

[22]  T. Kailath,et al.  Fast Parallel Algorithms for QR and Triangular Factorization , 1987 .

[23]  Charles M. Rader,et al.  Hyperbolic householder transformations , 1986, IEEE Trans. Acoust. Speech Signal Process..

[24]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[25]  Christian H. Bischof,et al.  The WY representation for products of householder matrices , 1985, PPSC.

[26]  V. V. Voevodin,et al.  TOEPLITZ package users' guide , 1983 .

[27]  G. Golub Matrix computations , 1983 .

[28]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[29]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[30]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .