On the Optimality of Planar and Geometric Approximation Schemes

We show for several planar and geometric problems that the best known approximation schemes are essentially optimal with respect to the dependence on epsi. For example, we show that the 2<sup>O(1/epsi)</sup>ldrn time approximation schemes for planar maximum independent set and for TSP on a metric defined bv a planar graph are essentially optimal: if there is a delta>0 such that any of these problems admits a 2<sup>O((1/epsi)</sup> <sup>1-delta</sup> <sup>)</sup>n<sup>O(1)</sup> time PTAS, then the exponential tune hypothesis (ETH) fails. It is known that maximum independent set on unit disk graphs and the planar logic problems MPSAT. TMIN, TMAX admit n<sup>O(1/epsi)</sup> time approximation schemes. We show that they are optimal in the sense that if there is a delta>0 such that any of these problems admits a 2<sup>(1/epsi)</sup> <sup>O(1)</sup> n<sup>O((1/epsi)</sup> <sup>1-delta</sup> <sup>)</sup> time PTAS, then ETH fails.

[1]  Liming Cai,et al.  The Complexity of Polynomial-Time Approximation , 2007, Theory of Computing Systems.

[2]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[3]  Ronald Cramer,et al.  Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption , 2001, EUROCRYPT.

[4]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[5]  Jochen Alber,et al.  Geometric Separation and Exact Solutions for the Parameterized Independent Set Problem on Disk Graphs , 2002, IFIP TCS.

[6]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[7]  Satish Rao,et al.  Approximating geometrical graphs via “spanners” and “banyans” , 1998, STOC '98.

[8]  Todd Cochrane,et al.  Small Solutions of the Legendre Equation , 1998 .

[9]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[10]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[11]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[12]  Rodney G. Downey,et al.  Parameterized complexity for the skeptic , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[13]  Luca Trevisan,et al.  On the Efficiency of Polynomial Time Approximation Schemes , 1997, Inf. Process. Lett..

[14]  Rolf Niedermeier,et al.  Parameterized complexity: exponential speed-up for planar graph problems , 2004, J. Algorithms.

[15]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[16]  Brent Waters,et al.  Ciphertext-Policy Attribute-Based Encryption , 2007, 2007 IEEE Symposium on Security and Privacy (SP '07).

[17]  Adi Shamir,et al.  An efficient signature scheme based on quadratic equations , 1984, STOC '84.

[18]  Vishal Saraswat,et al.  Public Key Encryption with Searchable Keywords Based on Jacobi Symbols , 2007, INDOCRYPT.

[19]  John Cremona,et al.  Efficient solution of rational conics , 2003, Math. Comput..

[20]  Jean-Sébastien Coron,et al.  Security Proof for Partial-Domain Hash Signature Schemes , 2002, CRYPTO.

[21]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[22]  Jonathan Katz,et al.  Chosen-Ciphertext Security from Identity-Based Encryption , 2006 .

[23]  Harry B. Hunt,et al.  NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998, J. Algorithms.

[24]  Alexandr Andoni,et al.  On the Optimality of the Dimensionality Reduction Method , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[25]  Elaine Shi,et al.  Multi-Dimensional Range Query over Encrypted Data , 2007, 2007 IEEE Symposium on Security and Privacy (SP '07).

[26]  E. J. V. Leeuwen Better Approximation Schemes for Disk Graphs , 2006, SWAT.

[27]  Dániel Marx,et al.  Efficient Approximation Schemes for Geometric Problems? , 2005, ESA.

[28]  D. W. Wang,et al.  A Study on Two Geometric Location Problems , 1988, Information Processing Letters.

[29]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[30]  Subhash Suri,et al.  Label placement by maximum independent set in rectangles , 1998, CCCG.

[31]  Diana K. Smetters,et al.  Secret handshakes from pairing-based key agreements , 2003, 2003 Symposium on Security and Privacy, 2003..

[32]  Luca Trevisan,et al.  The Approximability of Constraint Satisfaction Problems , 2001, SIAM J. Comput..

[33]  Rajeev Motwani,et al.  Towards a syntactic characterization of PTAS , 1996, STOC '96.

[34]  Philip N. Klein,et al.  A linear-time approximation scheme for planar weighted TSP , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[35]  Dániel Marx,et al.  The closest substring problem with small distances , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[36]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[37]  Claus-Peter Schnorr,et al.  An efficient solution of the congruence x2+ky2=mpmod{n} , 1987, IEEE Trans. Inf. Theory.

[38]  D. Diamond,et al.  Low-Energy Finite Field Arithmetic Primitives for Implementing Security in Wireless Sensor Networks , 2006, 2006 International Conference on Communications, Circuits and Systems.

[39]  Ge Xia,et al.  Linear FPT reductions and computational lower bounds , 2004, STOC '04.

[40]  Craig Gentry,et al.  How to Compress Rabin Ciphertexts and Signatures (and More) , 2004, CRYPTO.

[41]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[42]  Ewa Malesinska Graph-Theoretical Models for Frequency Assignment Problems , 1997 .