Click chemistry in complex mixtures: bioorthogonal bioconjugation.

[1]  J. Heukeshoven Side reaction of methionine with 4-vinylpyridine during acid hydrolysis of modified proteins. , 1980, Analytical Biochemistry.

[2]  C. Bertozzi,et al.  From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions , 2011, Accounts of chemical research.

[3]  C. Bertozzi,et al.  In Vivo Imaging of Caenorhabditis elegans Glycans , 2009, ACS chemical biology.

[4]  M. Sliwkowski,et al.  Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates , 2012, Nature Biotechnology.

[5]  G. Brewer,et al.  Risks of copper and iron toxicity during aging in humans. , 2010, Chemical research in toxicology.

[6]  Hakho Lee,et al.  Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. , 2010, Nature nanotechnology.

[7]  P. Dawson,et al.  Nucleophilic catalysis of oxime ligation. , 2006, Angewandte Chemie.

[8]  B. G. Davis,et al.  Safe and Scalable Preparation of Barluenga's Reagent , 2011 .

[9]  Bengang Xing,et al.  Allenamides as orthogonal handles for selective modification of cysteine in peptides and proteins. , 2014, Angewandte Chemie.

[10]  J. Moses,et al.  The growing applications of click chemistry. , 2007, Chemical Society reviews.

[11]  Reyna K. V. Lim,et al.  Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells. , 2011, Journal of the American Chemical Society.

[12]  N. Steinmetz,et al.  Labeling live cells by copper-catalyzed alkyne--azide click chemistry. , 2010, Bioconjugate chemistry.

[13]  A. Wagner,et al.  4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1.0]-nonyne. , 2014, Chemical communications.

[14]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.

[15]  Xiaoguang Lei,et al.  A bioorthogonal ligation enabled by click cycloaddition of o-quinolinone quinone methide and vinyl thioether. , 2013, Journal of the American Chemical Society.

[16]  K. Breitenkamp,et al.  Encapsidated Atom-Transfer Radical Polymerization in Qβ Virus-like Nanoparticles , 2014, ACS nano.

[17]  B. G. Davis,et al.  Olefin Metathesis for Site‐Selective Protein Modification , 2009, Chembiochem : a European journal of chemical biology.

[18]  C. Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[19]  Qing Lin,et al.  Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. , 2007, Organic letters.

[20]  Michael T. Taylor,et al.  Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. , 2011, Journal of the American Chemical Society.

[21]  Andrew B. Martin,et al.  Generation of a bacterium with a 21 amino acid genetic code. , 2003, Journal of the American Chemical Society.

[22]  H. Grüll,et al.  A doxorubicin prodrug activated by the staudinger reaction. , 2008, Bioconjugate chemistry.

[23]  M. Francis,et al.  Site-specific protein transamination using N-methylpyridinium-4-carboxaldehyde. , 2013, Journal of the American Chemical Society.

[24]  E. Nice,et al.  Use of thiazolidine-mediated ligation for site specific biotinylation of mouse EGF for biosensor immobilisation , 2001, Letters in Peptide Science.

[25]  M. Francis,et al.  Selective tryptophan modification with rhodium carbenoids in aqueous solution. , 2004, Journal of the American Chemical Society.

[26]  E. Meggers,et al.  Metal complex catalysis in living biological systems. , 2013, Chemical communications.

[27]  P. Schultz,et al.  A semisynthetic catalytic antibody , 1989 .

[28]  Pedro M. P. Gois,et al.  Iminoboronates: a new strategy for reversible protein modification. , 2012, Journal of the American Chemical Society.

[29]  C. Barbas,et al.  Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. , 2013, Bioconjugate chemistry.

[30]  S. Brocchini,et al.  A new reagent for stable thiol-specific conjugation. , 2014, Bioconjugate chemistry.

[31]  H. Janssen,et al.  Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. , 2013, Angewandte Chemie.

[32]  C. Bertozzi,et al.  A Pictet-Spengler ligation for protein chemical modification , 2012, Proceedings of the National Academy of Sciences.

[33]  Carolyn R Bertozzi,et al.  Introducing genetically encoded aldehydes into proteins. , 2007, Nature chemical biology.

[34]  Michael T. Taylor,et al.  Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. , 2012, Journal of the American Chemical Society.

[35]  C. Che,et al.  Gold-mediated selective cysteine modification of peptides using allenes. , 2013, Chemical communications.

[36]  M. Francis,et al.  Protein-cross-linked polymeric materials through site-selective bioconjugation. , 2008, Angewandte Chemie.

[37]  G. Valencia,et al.  Arylation of Phe and Tyr side chains of unprotected peptides by a Suzuki-Miyaura reaction in water. , 2008, Organic letters.

[38]  C. Bertozzi,et al.  A Bioorthogonal Quadricyclane Ligation , 2011, Journal of the American Chemical Society.

[39]  P. Drake,et al.  Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. , 2013, Bioconjugate chemistry.

[40]  M. Francis,et al.  Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. , 2009, Journal of the American Chemical Society.

[41]  P. Paul,et al.  Kinetics studies of rapid strain-promoted [3+2] cycloadditions of nitrones with bicyclo[6.1.0]nonyne , 2014 .

[42]  C. Bertozzi,et al.  Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag , 2009, Proceedings of the National Academy of Sciences.

[43]  R. Nolte,et al.  Metal‐Free Triazole Formation as a Tool for Bioconjugation , 2007, Chembiochem : a European journal of chemical biology.

[44]  Wenjiao Song,et al.  Fast alkene functionalization in vivo by Photoclick chemistry: HOMO lifting of nitrile imine dipoles. , 2009, Angewandte Chemie.

[45]  M. Wolfert,et al.  Protein Modification by Strain-Promoted Alkyne–Nitrone Cycloaddition , 2010, Angewandte Chemie.

[46]  K. Udachin,et al.  Rearrangements and addition reactions of biarylazacyclooctynones and the implications to copper-free click chemistry. , 2013, Organic & biomolecular chemistry.

[47]  P. Friedl,et al.  Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells , 2010, Angewandte Chemie.

[48]  M. Finn,et al.  Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. , 2007, Journal of the American Chemical Society.

[49]  Benjamin W. Thuronyi,et al.  Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. , 2010, Journal of the American Chemical Society.

[50]  Alexander M. Spokoyny,et al.  Enzymatic "click" ligation: selective cysteine modification in polypeptides enabled by promiscuous glutathione S-transferase. , 2013, Angewandte Chemie.

[51]  Alexander M. Spokoyny,et al.  A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling. , 2013, Journal of the American Chemical Society.

[52]  C. Bertozzi,et al.  Difluorobenzocyclooctyne: Synthesis, Reactivity, and Stabilization by β-Cyclodextrin , 2010, Journal of the American Chemical Society.

[53]  R. Rossin,et al.  SYNFORM ISSUE 2010/9 , 2010, Angewandte Chemie.

[54]  J. Rao,et al.  A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. , 2009, Angewandte Chemie.

[55]  Suming Chen,et al.  New Approach for Local Structure Analysis of the Tyrosine Domain in Proteins by Using a Site‐Specific and Polarity‐Sensitive Fluorescent Probe , 2009, Chembiochem : a European journal of chemical biology.

[56]  C. Bertozzi,et al.  Expanding the Diversity of Unnatural Cell‐Surface Sialic Acids , 2003, Chembiochem : a European journal of chemical biology.

[57]  M. Francis,et al.  Attachment of peptide building blocks to proteins through tyrosine bioconjugation. , 2008, Bioconjugate chemistry.

[58]  Reyna K. V. Lim,et al.  Azirine Ligation: Fast and Selective Protein Conjugation via Photoinduced Azirine—Alkene Cycloaddition. , 2011 .

[59]  E. Stadtman Protein oxidation and aging , 2006, Science.

[60]  Jennifer A. Prescher,et al.  Functionalized cyclopropenes as bioorthogonal chemical reporters. , 2012, Journal of the American Chemical Society.

[61]  T. Schumacher,et al.  In Vitro Radiolabeling of Peptides and Proteins , 1995, Current protocols in protein science.

[62]  R. Raines,et al.  Staudinger ligation: a peptide from a thioester and azide. , 2000, Organic letters.

[63]  David J Brayden,et al.  Direct peptide bioconjugation/PEGylation at tyrosine with linear and branched polymeric diazonium salts. , 2012, Journal of the American Chemical Society.

[64]  M. Finn,et al.  Degradable conjugates from oxanorbornadiene reagents. , 2012, Journal of the American Chemical Society.

[65]  R. Raines,et al.  Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes(). , 2012, Chemical science.

[66]  Jacob M Hooker,et al.  Interior surface modification of bacteriophage MS2. , 2004, Journal of the American Chemical Society.

[67]  Herbert Waldmann,et al.  The Pictet-Spengler reaction in nature and in organic chemistry. , 2011, Angewandte Chemie.

[68]  Alexander M. Spokoyny,et al.  Convergent diversity-oriented side-chain macrocyclization scan for unprotected polypeptides. , 2013, Organic & biomolecular chemistry.

[69]  Reyna K. V. Lim,et al.  Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. , 2011, Accounts of chemical research.

[70]  P. Dawson,et al.  Synthesis of native proteins by chemical ligation. , 2000, Annual review of biochemistry.

[71]  C. Bertozzi,et al.  Metabolic labeling of glycoproteins with chemical tags through unnatural sialic acid biosynthesis. , 2000, Methods in enzymology.

[72]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[73]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[74]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[75]  R. Weissleder,et al.  Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. , 2010, Journal of the American Chemical Society.

[76]  K. Kiick,et al.  Tunable degradation of maleimide-thiol adducts in reducing environments. , 2011, Bioconjugate chemistry.

[77]  A. Narayanan,et al.  Understanding and applying tyrosine biochemical diversity. , 2014, Molecular bioSystems.

[78]  W. Schwack,et al.  Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid. , 2004, Carbohydrate research.

[79]  T. Carell,et al.  Copper-free "click" modification of DNA via nitrile oxide-norbornene 1,3-dipolar cycloaddition. , 2009, Organic letters.

[80]  T. Carell,et al.  Norbornenes in inverse electron-demand Diels-Alder reactions. , 2013, Chemistry.

[81]  K. Niikura,et al.  Control of bacteria adhesion by cell-wall engineering. , 2004, Journal of the American Chemical Society.

[82]  Lei Zhu,et al.  Chelation-assisted, copper(II)-acetate-accelerated azide-alkyne cycloaddition. , 2010, The Journal of organic chemistry.

[83]  K. Grela,et al.  Highly active catalysts for olefin metathesis in water , 2012 .

[84]  F. Tamanoi,et al.  A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[86]  R. Pipkorn,et al.  Inverse‐electron‐demand Diels‐Alder reaction as a highly efficient chemoselective ligation procedure: Synthesis and function of a BioShuttle for temozolomide transport into prostate cancer cells , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[87]  Jianghong Rao,et al.  A biocompatible condensation reaction for controlled assembly of nanostructures in live cells , 2010, Nature chemistry.

[88]  M. Finn,et al.  Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. , 2004, Chemistry & biology.

[89]  M. Francis,et al.  Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. , 2005, Journal of the American Chemical Society.

[90]  C. Poulter,et al.  Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives. , 2013, ACS chemical biology.

[91]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[92]  J. Simpson,et al.  Improved procedure for direct coupling of carbohydrates to proteins via reductive amination. , 2008, Bioconjugate chemistry.

[93]  E. Carreira,et al.  Amine-selective bioconjugation using arene diazonium salts. , 2014, Organic letters.

[94]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[95]  M. Distefano,et al.  A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation. , 2013, Bioconjugate chemistry.

[96]  J. V. Hest,et al.  Staudinger ligation as a method for bioconjugation. , 2011 .

[97]  S. Ulrich,et al.  Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. , 2014, Chemistry.

[98]  M. Stenzel Bioconjugation Using Thiols: Old Chemistry Rediscovered to Connect Polymers with Nature's Building Blocks. , 2013, ACS macro letters.

[99]  Pete Crisalli,et al.  Importance of ortho proton donors in catalysis of hydrazone formation. , 2013, Organic letters.

[100]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[101]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[102]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[103]  Grigory Tikhomirov,et al.  Bioorthogonal Cyclization-Mediated In Situ Self-Assembly of Small Molecule Probes for Imaging Caspase Activity in vivo , 2014, Nature chemistry.

[104]  T. Muir,et al.  Synthesis of proteins by native chemical ligation. , 1994, Science.

[105]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[106]  D. Díaz,et al.  Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. , 2007, Journal of the American Chemical Society.

[107]  P. Schultz,et al.  Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. , 2003, Journal of the American Chemical Society.

[108]  Christopher D. Spicer,et al.  Palladium-mediated cell-surface labeling. , 2012, Journal of the American Chemical Society.

[109]  K. Brindle,et al.  Metabolic Glycan Imaging by Isonitrile–Tetrazine Click Chemistry , 2013, Chembiochem : a European journal of chemical biology.

[110]  Ronald T Raines,et al.  Hydrolytic stability of hydrazones and oximes. , 2008, Angewandte Chemie.

[111]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[112]  D. S. Hage,et al.  Development of a kinetic model to describe the effective rate of antibody oxidation by periodate. , 1997, Bioconjugate chemistry.

[113]  Jennifer A. Prescher,et al.  Copper-free click chemistry in living animals , 2010, Proceedings of the National Academy of Sciences.

[114]  W. Jencks Studies on the Mechanism of Oxime and Semicarbazone Formation1 , 1959 .

[115]  Joseph P Noel,et al.  Genetically encoding photoswitchable click amino acids in Escherichia coli and mammalian cells. , 2014, Angewandte Chemie.

[116]  Reyna K. V. Lim,et al.  Bioorthogonal chemistry: recent progress and future directions. , 2010, Chemical communications.

[117]  M. Finn,et al.  Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. , 2004, Journal of the American Chemical Society.

[118]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[119]  Michael M. Madden,et al.  A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. , 2008, Angewandte Chemie.

[120]  B. G. Davis,et al.  Chemical modification of proteins at cysteine: opportunities in chemistry and biology. , 2009, Chemistry, an Asian journal.

[121]  K. Grela,et al.  Aqueous Olefin Metathesis , 2009 .

[122]  C. Bertozzi,et al.  A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. , 2000, Organic letters.

[123]  J. V. Hest,et al.  Efficient incorporation of unsaturated methionine analogues into proteins in vivo , 2000 .

[124]  Q. Wang,et al.  Surface Modification of Tobacco Mosaic Virus with “Click” Chemistry , 2008, Chembiochem : a European journal of chemical biology.

[125]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[126]  M. Finn,et al.  Thiol-selective fluorogenic probes for labeling and release. , 2009, Journal of the American Chemical Society.

[127]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[128]  J. Errey,et al.  Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. , 2008, Journal of the American Chemical Society.

[129]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[130]  Wei Zhang,et al.  A biosynthetic route to photoclick chemistry on proteins. , 2010, Journal of the American Chemical Society.

[131]  Peng R. Chen,et al.  Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling , 2012 .

[132]  Sungjin Park,et al.  General Chemoselective and Redox-Responsive Ligation and Release Strategy , 2014, Bioconjugate chemistry.

[133]  H. Ploegh,et al.  Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells. , 2007, Journal of the American Chemical Society.

[134]  Peng R. Chen,et al.  Transition metal-mediated bioorthogonal protein chemistry in living cells. , 2014, Chemical Society reviews.

[135]  D. Neri,et al.  Site-specific chemical modification of antibody fragments using traceless cleavable linkers , 2013, Nature Protocols.

[136]  F. Santoyo-González,et al.  Monovinyl Sulfone β‐Cyclodextrin. A Flexible Drug Carrier System , 2014, ChemMedChem.

[137]  J. Baldwin,et al.  Valence rearrangement of hetero systems. The 4-isoxazolines , 1968 .

[138]  B. G. Davis,et al.  Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins , 2013, Journal of the American Chemical Society.

[139]  Allie C. Obermeyer,et al.  Oxidative modification of native protein residues using cerium(IV) ammonium nitrate. , 2011, Journal of the American Chemical Society.

[140]  R. Weissleder,et al.  Synthesis and in vivo imaging of a 18F-labeled PARP1 inhibitor using a chemically orthogonal scavenger-assisted high-performance method. , 2011, Angewandte Chemie.

[141]  K. Held,et al.  Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. , 1997, Free radical biology & medicine.

[142]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[143]  C. Créminon,et al.  Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. , 2013, Angewandte Chemie.

[144]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[145]  Lei Wang,et al.  Expanding the Genetic Code , 2003, Science.

[146]  L. Hedstrom,et al.  Mushroom Tyrosinase Oxidizes Tyrosine‐Rich Sequences to Allow Selective Protein Functionalization , 2012, Chembiochem : a European journal of chemical biology.

[147]  M. Francis,et al.  Modification of aniline containing proteins using an oxidative coupling strategy. , 2006, Journal of the American Chemical Society.

[148]  P. Schultz,et al.  Site-specific protein modification using a ketone handle , 1996 .

[149]  Z. Ball,et al.  Site-specific protein modification with a dirhodium metallopeptide catalyst. , 2011, ACS chemical biology.

[150]  K. H. Shaughnessy Beyond TPPTS: New Approaches to the Development of Efficient Palladium‐Catalyzed Aqueous‐Phase Cross‐Coupling Reactions , 2006 .

[151]  B. G. Davis,et al.  Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection. , 2010, Journal of the American Chemical Society.

[152]  D. Filippov,et al.  Acylazetine as a dienophile in bioorthogonal inverse electron-demand Diels-Alder ligation. , 2014, Organic letters.

[153]  R. Weissleder,et al.  High‐Yielding, Two‐Step 18F Labeling Strategy for 18F‐PARP1 Inhibitors , 2011, ChemMedChem.

[154]  Wenjiao Song,et al.  Selective functionalization of a genetically encoded alkene-containing protein via "photoclick chemistry" in bacterial cells. , 2008, Journal of the American Chemical Society.

[155]  R. Weissleder,et al.  Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. , 2011, Bioconjugate chemistry.

[156]  Allie C. Obermeyer,et al.  Mild bioconjugation through the oxidative coupling of ortho-aminophenols and anilines with ferricyanide. , 2014, Angewandte Chemie.

[157]  R. Day,et al.  Modification of peptide and protein cysteine thiol groups by conjugation with a degradation product of ascorbate. , 2013, Chemical research in toxicology.

[158]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[159]  C. Bertozzi,et al.  Live‐Cell Imaging of Cellular Proteins by a Strain‐Promoted Azide–Alkyne Cycloaddition , 2010, Chembiochem : a European journal of chemical biology.

[160]  Pete Crisalli,et al.  Water-soluble organocatalysts for hydrazone and oxime formation. , 2013, The Journal of organic chemistry.

[161]  Partha Sarathi Banerjee,et al.  Unnatural Amino Acid Incorporation onto Adenoviral (Ad) Coat Proteins Facilitates Chemoselective Modification and Retargeting of Ad Type 5 Vectors , 2011, Journal of Virology.

[162]  Y. Leung,et al.  Modification of N-terminal α-amino groups of peptides and proteins using ketenes. , 2012, Journal of the American Chemical Society.

[163]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[164]  F. Rutjes,et al.  Synthesis of isoxazoles by hypervalent iodine-induced cycloaddition of nitrile oxides to alkynes. , 2011, Chemical communications.

[165]  S. L. Mayo,et al.  A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. , 2002, Journal of the American Chemical Society.

[166]  D. Tirrell,et al.  Noncanonical amino acids in the interrogation of cellular protein synthesis. , 2011, Accounts of chemical research.

[167]  Flagothier Jessica,et al.  Synthesis of [18F]4-(4-fluorophenyl)-1,2,4-triazole-3,5-dione: an agent for specific radiolabelling of tyrosine , 2013 .

[168]  J. Shively,et al.  Maleimidocysteineamido-DOTA derivatives: new reagents for radiometal chelate conjugation to antibody sulfhydryl groups undergo pH-dependent cleavage reactions. , 1998, Bioconjugate chemistry.

[169]  Ralph Weissleder,et al.  Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. , 2009, Angewandte Chemie.

[170]  C. Che,et al.  Electron-deficient alkynes as cleavable reagents for the modification of cysteine-containing peptides in aqueous medium. , 2009, Chemistry.

[171]  D. Hamelberg,et al.  Clicking 1,2,4,5-tetrazine and cyclooctynes with tunable reaction rates. , 2012, Chemical communications.

[172]  Mark R. Karver,et al.  Metal‐Catalyzed One‐Pot Synthesis of Tetrazines Directly from Aliphatic Nitriles and Hydrazine. , 2012 .

[173]  Stephen Wallace,et al.  Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition , 2014, Chemical science.

[174]  Lei Zhu,et al.  Chelation‐Assisted, Copper(II)‐Acetate‐Accelerated Azide—Alkyne Cycloaddition. , 2011 .

[175]  P. Nanni,et al.  A new ligation strategy for peptide and protein glycosylation: photoinduced thiol-ene coupling. , 2009, Chemistry.

[176]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[177]  W. Jencks,et al.  Equilibria for additions to the carbonyl group , 1968 .

[178]  C. Bertozzi,et al.  In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish , 2008, Science.

[179]  D. Tirrell,et al.  Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing‐Impaired Leucyl‐tRNA Synthetase , 2009, Chembiochem : a European journal of chemical biology.

[180]  Craig J. Hawker,et al.  The Convergence of Synthetic Organic and Polymer Chemistries , 2005, Science.

[181]  Alain Wagner,et al.  Copper-chelating azides for efficient click conjugation reactions in complex media. , 2014, Angewandte Chemie.

[182]  Carolyn R Bertozzi,et al.  Synthesis of Heterobifunctional Protein Fusions Using Copper-Free Click Chemistry and the Aldehyde Tag , 2012, Angewandte Chemie.

[183]  Katsunori Tanaka,et al.  A cascading reaction sequence involving ligand-directed azaelectrocyclization and autooxidation-induced fluorescence recovery enables visualization of target proteins on the surfaces of live cells. , 2014, Organic & biomolecular chemistry.

[184]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[185]  Neel S. Joshi,et al.  A three-component Mannich-type reaction for selective tyrosine bioconjugation. , 2004, Journal of the American Chemical Society.

[186]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[187]  Damon L. Meyer,et al.  Contribution of linker stability to the activities of anticancer immunoconjugates. , 2008, Bioconjugate chemistry.

[188]  Neel S. Joshi,et al.  N-terminal protein modification through a biomimetic transamination reaction. , 2006, Angewandte Chemie.

[189]  R. Derda,et al.  Rapid, hydrolytically stable modification of aldehyde-terminated proteins and phage libraries. , 2014, Journal of the American Chemical Society.

[190]  K. Houk,et al.  Synthesis and reactivity comparisons of 1-methyl-3-substituted cyclopropene mini-tags for tetrazine bioorthogonal reactions. , 2014, Chemistry.

[191]  T. Kodadek,et al.  Techniques: Oxidative cross-linking as an emergent tool for the analysis of receptor-mediated signalling events. , 2005, Trends in pharmacological sciences.

[192]  T. Kigawa,et al.  Regioselective Carbon–Carbon Bond Formation in Proteins with Palladium Catalysis; New Protein Chemistry by Organometallic Chemistry , 2006, Chembiochem : a European journal of chemical biology.

[193]  C. Barbas,et al.  Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. , 2010, Journal of the American Chemical Society.

[194]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[195]  Katsunori Tanaka,et al.  Site‐Selective and Nondestructive Protein Labeling through Azaelectrocyclization‐Induced Cascade Reactions , 2008, Chembiochem : a European journal of chemical biology.

[196]  S. Al-Karadaghi,et al.  Occurrence, conformational features and amino acid propensities for the pi-helix. , 2002, Protein engineering.

[197]  Trevor Douglas,et al.  Synthesis of a cross-linked branched polymer network in the interior of a protein cage. , 2009, Journal of the American Chemical Society.

[198]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[199]  P. Dawson,et al.  Enhanced catalysis of oxime-based bioconjugations by substituted anilines. , 2014, Bioconjugate chemistry.

[200]  Jennifer A. Prescher,et al.  Imaging cell surface glycans with bioorthogonal chemical reporters. , 2007, Journal of the American Chemical Society.

[201]  E. Schmidt,et al.  Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements. , 2013, ACS chemical biology.

[202]  K. Nicolaou,et al.  Palladium-catalyzed cross-coupling reactions in total synthesis. , 2005, Angewandte Chemie.

[203]  Z. Mester,et al.  Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. , 2011, Journal of the American Chemical Society.

[204]  Haoxing Wu,et al.  In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes. , 2014, Angewandte Chemie.

[205]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[206]  P. Schultz,et al.  Addition of the keto functional group to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[207]  M. Debets,et al.  Azide: A Unique Dipole for Metal‐Free Bioorthogonal Ligations , 2010, Chembiochem : a European journal of chemical biology.

[208]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.

[209]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[210]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[211]  Hui-wang Ai,et al.  A highly efficient oxidative condensation reaction for selective protein conjugation. , 2014, Chemical communications.

[212]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[213]  T. Deming,et al.  Reversible chemoselective tagging and functionalization of methionine containing peptides. , 2013, Chemical communications.

[214]  Partha Sarathi Banerjee,et al.  Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells. , 2010, Journal of the American Chemical Society.

[215]  Wenjiao Song,et al.  Discovery of Long‐Wavelength Photoactivatable Diaryltetrazoles for Bioorthogonal 1,3‐Dipolar Cycloaddition Reactions. , 2009 .

[216]  Allie C. Obermeyer,et al.  N-Terminal Modification of Proteins with o-Aminophenols , 2014, Journal of the American Chemical Society.

[217]  T. Kigawa,et al.  Site‐Specific Functionalization of Proteins by Organopalladium Reactions , 2006, Chembiochem : a European journal of chemical biology.

[218]  Neel S. Joshi,et al.  Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. , 2008, Journal of the American Chemical Society.

[219]  Sjoerd Dirksen,et al.  Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. , 2006, Journal of the American Chemical Society.

[220]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[221]  K. Chester,et al.  Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds. , 2014, Chemical communications.

[222]  M. Francis,et al.  Dual-surface modification of the tobacco mosaic virus. , 2005, Journal of the American Chemical Society.

[223]  J. Pezacki,et al.  Strain-promoted cycloadditions involving nitrones and alkynes--rapid tunable reactions for bioorthogonal labeling. , 2014, Current opinion in chemical biology.

[224]  James A Van Deventer,et al.  Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. , 2010, Current opinion in chemical biology.

[225]  Lei Zhu,et al.  Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. , 2011, Journal of the American Chemical Society.

[226]  D. Andreu,et al.  Iodination of proteins by IPy2BF4, a new tool in protein chemistry. , 2006, Biochemistry.

[227]  Rahimi M. Yusop,et al.  Palladium-mediated intracellular chemistry. , 2011, Nature chemistry.

[228]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[229]  C. Cai,et al.  Anaerobic conditions to reduce oxidation of proteins and to accelerate the copper-catalyzed "Click" reaction with a water-soluble bis(triazole) ligand. , 2011, Chemical communications.

[230]  C. Bertozzi,et al.  Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. , 2013, Journal of the American Chemical Society.

[231]  W. Liu,et al.  The nitrilimine-alkene cycloaddition is an ultra rapid click reaction. , 2014, Chemical communications.

[232]  Reyna K. V. Lim,et al.  Azirine ligation: fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition. , 2010, Chemical communications.

[233]  Craig S. McKay,et al.  Kinetics studies of rapid strain-promoted [3 + 2]-cycloadditions of nitrones with biaryl-aza-cyclooctynone. , 2012, Organic & biomolecular chemistry.

[234]  K. Rose,et al.  Construction of protein analogues by site-specific condensation of unprotected fragments. , 1992, Bioconjugate chemistry.

[235]  C. Bertozzi,et al.  Imaging the Sialome during Zebrafish Development with Copper-Free Click Chemistry , 2012, Chembiochem : a European journal of chemical biology.

[236]  A. Ting,et al.  Site-specific protein labeling using PRIME and chelation-assisted click chemistry , 2013, Nature Protocols.

[237]  Markus Grammel,et al.  Chemical reporters for biological discovery. , 2013, Nature chemical biology.

[238]  K. Geoghegan,et al.  Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine. , 1992, Bioconjugate chemistry.

[239]  Mark E. B. Smith,et al.  Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment. , 2014, Bioconjugate chemistry.

[240]  Paul M. Levine,et al.  Intrinsic bioconjugation for site-specific protein PEGylation at N-terminal serine. , 2014, Chemical communications.

[241]  T. Deming,et al.  Preparation of multifunctional and multireactive polypeptides via methionine alkylation. , 2012, Biomacromolecules.

[242]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[243]  C. Barbas,et al.  Antibody Conjugation Approach Enhances Breadth and Potency of Neutralization of Anti-HIV-1 Antibodies and CD4-IgG , 2013, Journal of Virology.

[244]  C. Bertozzi,et al.  Protein Glycoengineering Enabled by the Versatile Synthesis of Aminooxy Glycans and the Genetically Encoded Aldehyde Tag , 2011, Journal of the American Chemical Society.

[245]  S. Brocchini,et al.  Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. , 2007, Bioconjugate chemistry.

[246]  J. V. van Hest,et al.  Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. , 2010, Chemical communications.

[247]  P. Dawson,et al.  Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. , 2008, Bioconjugate chemistry.

[248]  G. Charron,et al.  Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. , 2011, Accounts of chemical research.

[249]  Jennifer A. Prescher,et al.  A comparative study of bioorthogonal reactions with azides. , 2006, ACS chemical biology.

[250]  J. Schatz,et al.  Olefin metathesis in aqueous media , 2013 .

[251]  M. Distefano,et al.  Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. , 2012, Journal of the American Chemical Society.

[252]  R. Griffin The medicinal chemistry of the azido group. , 1994, Progress in medicinal chemistry.

[253]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[254]  V. Popik,et al.  Metal-free sequential [3 + 2]-dipolar cycloadditions using cyclooctynes and 1,3-dipoles of different reactivity. , 2011, Journal of the American Chemical Society.

[255]  C. Bertozzi,et al.  Mechanistic investigation of the staudinger ligation. , 2005, Journal of the American Chemical Society.

[256]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[257]  H. Klok,et al.  Arginine-specific modification of proteins with polyethylene glycol. , 2011, Biomacromolecules.

[258]  W. Liu,et al.  A genetically encoded aldehyde for rapid protein labelling. , 2014, Chemical communications.

[259]  C. Bertozzi,et al.  A Homologation Approach to the Synthesis of Difluorinated Cycloalkynes , 2014, Organic letters.

[260]  Weiling Zhao,et al.  Strained Cycloalkynes as New Protein Sulfenic Acid Traps , 2014, Journal of the American Chemical Society.

[261]  R. Kühne,et al.  Intramolecular bridges formed by photoswitchable click amino acids , 2012, Beilstein journal of organic chemistry.

[262]  Venkata R. Krishnamurthy,et al.  Allylic selenosulfide rearrangement: a method for chemical ligation to cysteine and other thiols. , 2006, Journal of the American Chemical Society.

[263]  Craig S. McKay,et al.  Nitrones as dipoles for rapid strain-promoted 1,3-dipolar cycloadditions with cyclooctynes. , 2010, Chemical communications.

[264]  I. Singh,et al.  Solid phase strain promoted "click" modification of DNA via [3+2]-nitrile oxide-cyclooctyne cycloadditions. , 2011, Chemical communications.

[265]  D. Dearborn,et al.  Labeling of proteins by reductive methylation using sodium cyanoborohydride. , 1979, The Journal of biological chemistry.

[266]  Wenjiao Song,et al.  A metabolic alkene reporter for spatiotemporally controlled imaging of newly synthesized proteins in Mammalian cells. , 2010, ACS chemical biology.

[267]  Shohei Koide,et al.  The importance of being tyrosine: lessons in molecular recognition from minimalist synthetic binding proteins. , 2009, ACS chemical biology.

[268]  F. Marlow,et al.  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[269]  A. Corti,et al.  Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. , 2010, Archives of biochemistry and biophysics.

[270]  M. Finn,et al.  Aqueous-phase deactivation and intramolecular [2 + 2 + 2] cycloaddition of oxanorbornadiene esters. , 2011, Organic letters.

[271]  Craig S. McKay,et al.  Strain-promoted cycloadditions of cyclic nitrones with cyclooctynes for labeling human cancer cells. , 2011, Chemical communications.

[272]  J. Florent,et al.  A new drug-release method using the Staudinger ligation. , 2006, Bioorganic & medicinal chemistry letters.

[273]  F. Marlow,et al.  Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry , 2014, Bioconjugate chemistry.

[274]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[275]  M. Francis,et al.  Optimization of a biomimetic transamination reaction. , 2008, Journal of the American Chemical Society.

[276]  M. Francis,et al.  Tyrosine-selective protein alkylation using pi-allylpalladium complexes. , 2006, Journal of the American Chemical Society.

[277]  S. Fry,et al.  ESR study of the non-enzymic scission of xyloglucan by an ascorbate-H2O2-copper system: the involvement of the hydroxyl radical and the degradation of ascorbate. , 2001, Journal of inorganic biochemistry.

[278]  Craig J Hawker,et al.  Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. , 2004, Angewandte Chemie.

[279]  Lei Zhu,et al.  Apparent copper(II)-accelerated azide-alkyne cycloaddition. , 2009, Organic letters.

[280]  Alain Wagner,et al.  Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles. , 2014, Bioconjugate chemistry.

[281]  Qing Lin,et al.  Design of Spiro[2.3]hex-1-ene, a Genetically Encodable Double-Strained Alkene for Superfast Photoclick Chemistry , 2014, Journal of the American Chemical Society.

[282]  Hiroyuki Nakamura,et al.  Ligand-directed selective protein modification based on local single-electron-transfer catalysis. , 2013, Angewandte Chemie.

[283]  P. Schultz,et al.  Genetically encoded alkenes in yeast. , 2010, Angewandte Chemie.

[284]  P. Conti,et al.  Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes. , 2010, Chemical communications.

[285]  Q. Guo,et al.  Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue. , 2013, Organic & biomolecular chemistry.

[286]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[287]  Allie C. Obermeyer,et al.  Rapid chemoselective bioconjugation through oxidative coupling of anilines and aminophenols. , 2011, Journal of the American Chemical Society.

[288]  K. Geoghegan,et al.  Site-directed double fluorescent tagging of human renin and collagenase (MMP-1) substrate peptides using the periodate oxidation of N-terminal serine. An apparently general strategy for provision of energy-transfer substrates for proteases. , 1993, Bioconjugate chemistry.

[289]  C. Barbas,et al.  Rapid, stable, chemoselective labeling of thiols with Julia-Kocieński-like reagents: a serum-stable alternative to maleimide-based protein conjugation. , 2013, Angewandte Chemie.

[290]  R. Bednar,et al.  Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase. , 1990, Biochemistry.

[291]  Pete Crisalli,et al.  Fast Alpha Nucleophiles: Structures that Undergo Rapid Hydrazone/Oxime Formation at Neutral pH , 2014, Organic letters.

[292]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[293]  Tsubasa Sasaki,et al.  N-terminal labeling of proteins by the Pictet-Spengler reaction. , 2008, Bioorganic & medicinal chemistry letters.

[294]  D. Rideout Self-assembling cytotoxins. , 1986, Science.

[295]  S. Weiss,et al.  Efficient site-specific labeling of proteins via cysteines. , 2008, Bioconjugate chemistry.

[296]  E. Meggers,et al.  Ruthenium-induced allylcarbamate cleavage in living cells. , 2006, Angewandte Chemie.