Low Species Barriers in Halophilic Archaea and the Formation of Recombinant Hybrids

Speciation of sexually reproducing organisms requires reproductive barriers. Prokaryotes reproduce asexually but often exchange DNA by lateral gene transfer mechanisms and recombination [1], yet distinct lineages are still observed. Thus, barriers to gene flow such as geographic isolation, genetic incompatibility or a physiological inability to transfer DNA represent potential underlying mechanisms behind preferred exchange groups observed in prokaryotes [2-6]. In Bacteria, experimental evidence showed that sequence divergence impedes homologous recombination between bacterial species [7-11]. Here we study interspecies gene exchange in halophilic archaea that possess a parasexual mechanism of genetic exchange that is functional between species [12, 13]. In this process, cells fuse forming a diploid state containing the full genetic repertoire of both parental cells, which facilitates genetic exchange and recombination. Later, cells separate, occasionally resulting in hybrids of the parental strains [14]. We show high recombination frequencies between Haloferax volcanii and Haloferax mediterranei, two species that have an average nucleotide sequence identity of 86.6%. Whole genome sequencing of Haloferax interspecies hybrids revealed the exchange of chromosomal fragments ranging from 310Kb to 530Kb. These results show that recombination barriers may be more permissive in halophilic archaea than they are in bacteria.

[1]  E. Feil,et al.  Population structure and evolutionary dynamics of pathogenic bacteria , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[2]  Christopher G. Dowson,et al.  Barriers to Genetic Exchange between Bacterial Species: Streptococcus pneumoniae Transformation , 2000, Journal of bacteriology.

[3]  W. Doolittle,et al.  Shuttle vectors for the archaebacterium Halobacterium volcanii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Donnelly,et al.  Recombination and Population Structure in Salmonella enterica , 2011, PLoS genetics.

[5]  M. Radman,et al.  The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants , 1989, Nature.

[6]  Otto X. Cordero,et al.  Population Genomics of Early Events in the Ecological Differentiation of Bacteria , 2012, Science.

[7]  D. Grogan,et al.  Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. , 2005, Molecular biology and evolution.

[8]  R. G. Lloyd,et al.  Development of Additional Selectable Markers for the Halophilic Archaeon Haloferax volcanii Based on the leuB and trpA Genes , 2004, Applied and Environmental Microbiology.

[9]  J. Claverys,et al.  Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. , 2002, Frontiers in bioscience : a journal and virtual library.

[10]  Julie C Dunning Hotopp,et al.  Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination , 2011, Proceedings of the National Academy of Sciences.

[11]  R. L. Charlebois,et al.  Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei , 1995, Journal of bacteriology.

[12]  M. Dyall-Smith,et al.  A plasmid vector with a selectable marker for halophilic archaebacteria , 1990, Journal of bacteriology.

[13]  M. Roberts,et al.  The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. , 1995, Genetics.

[14]  D. Ionescu,et al.  Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma'in hot springs (Jordan). , 2010, FEMS microbiology ecology.

[15]  W. Doolittle,et al.  Prokaryotic evolution in light of gene transfer. , 2002, Molecular biology and evolution.

[16]  W. Doolittle,et al.  Frequent Recombination in a Saltern Population of Halorubrum , 2004, Science.

[17]  Vincent J. Denef,et al.  Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. , 2009, Environmental microbiology.

[18]  D. M. Ward,et al.  Geographical isolation in hot spring cyanobacteria. , 2003, Environmental microbiology.

[19]  F. Rodríguez-Valera,et al.  Genomic plasticity in prokaryotes: the case of the square haloarchaeon , 2007, The ISME Journal.

[20]  J. Lawrence,et al.  Gene transfer in bacteria: speciation without species? , 2002, Theoretical population biology.

[21]  M. Mevarech,et al.  Interspecies Genetic Transfer in Halophilic Archaebacteria , 1993 .

[22]  W. Doolittle,et al.  Transformation methods for halophilic archaebacteria. , 1989, Canadian journal of microbiology.

[23]  F. Rodríguez-Valera,et al.  Classification of Non-alkaliphilic Halobacteria Based on Numerical Taxonomy and Polar Lipid Composition, and Description of Haloarcula gen. nov. and Haloferax gen. nov. , 1986 .

[24]  C. Fraser,et al.  Recombination and the Nature of Bacterial Speciation , 2007, Science.

[25]  A. Darling,et al.  Patterns of Gene Flow Define Species of Thermophilic Archaea , 2012, PLoS biology.

[26]  Jeffrey R. Robinson,et al.  The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon , 2010, PloS one.

[27]  I. Rosenshine,et al.  The mechanism of DNA transfer in the mating system of an archaebacterium. , 1989, Science.

[28]  R. Ortenberg,et al.  Development of a Gene Knockout System for the Halophilic Archaeon Haloferax volcanii by Use of the pyrE Gene , 2003, Journal of bacteriology.

[29]  J. Abad,et al.  Genomic organization of the halophilic archaeon Haloferax mediterranei: physical map of the chromosome. , 1992, Nucleic acids research.

[30]  S. Liddell,et al.  Improved Strains and Plasmid Vectors for Conditional Overexpression of His-Tagged Proteins in Haloferax volcanii , 2010, Applied and Environmental Microbiology.

[31]  X. Didelot,et al.  A comparison of homologous recombination rates in bacteria and archaea , 2009, The ISME Journal.

[32]  C. Fraser,et al.  The Bacterial Species Challenge: Making Sense of Genetic and Ecological Diversity , 2009, Science.

[33]  M. Radman,et al.  Interspecific recombination between Escherichia coli and Salmonella typhimurium occurs by the RecABCD pathway. , 1991, Biochimie.

[34]  F. Taddei,et al.  Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. P. Dillard,et al.  Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination , 2006, Molecular microbiology.

[36]  Wayne M. Getz,et al.  Genetic Exchange Across a Species Boundary in the Archaeal Genus Ferroplasma , 2007, Genetics.

[37]  W. Doolittle,et al.  Searching for species in haloarchaea , 2007, Proceedings of the National Academy of Sciences.

[38]  Christopher P. McKay,et al.  Ancient origins determine global biogeography of hot and cold desert cyanobacteria , 2011, Nature communications.

[39]  R. Papke,et al.  A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. , 2011, International journal of systematic and evolutionary microbiology.

[40]  J. Gogarten,et al.  How Bacterial Lineages Emerge , 2012, Science.

[41]  T. Allers,et al.  Archaeal genetics — the third way , 2005, Nature Reviews Genetics.

[42]  M. Wagner,et al.  Microbial diversity and the genetic nature of microbial species , 2008, Nature Reviews Microbiology.

[43]  U. Gophna,et al.  In Vivo Characterization of the Homing Endonuclease within the polB Gene in the Halophilic Archaeon Haloferax volcanii , 2011, PloS one.

[44]  H. Larsen,et al.  Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement , 1975, Archives of Microbiology.

[45]  Cheryl P. Andam,et al.  Biased gene transfer in microbial evolution , 2011, Nature Reviews Microbiology.

[46]  Yan Boucher,et al.  Intragenomic Heterogeneity and Intergenomic Recombination among Haloarchaeal rRNA Genes , 2004, Journal of bacteriology.