DCN-Based Spatial Features for Improving Parcel-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data

[1]  Hee-Kap Ahn,et al.  Computing the Discrete FRéChet Distance with Imprecise Input , 2010, Int. J. Comput. Geom. Appl..

[2]  Derek T. Anderson,et al.  Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community , 2017 .

[3]  Jihua Meng,et al.  Crop classification using multi-configuration SAR data in the North China Plain , 2012 .

[4]  Shihong Du,et al.  Learning multiscale and deep representations for classifying remotely sensed imagery , 2016 .

[5]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Zhou Guo,et al.  On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery , 2015 .

[7]  Donald A. Adjeroh,et al.  Efficient texture analysis of SAR imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Haipeng Wang,et al.  Target Classification Using the Deep Convolutional Networks for SAR Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Nataliia Kussul,et al.  Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[10]  Heather McNairn,et al.  Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2 , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Robert R. De Wulf,et al.  Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping , 2019, ISPRS Int. J. Geo Inf..

[12]  Xia Li,et al.  Integration of Convolutional Neural Networks and Object-Based Post-Classification Refinement for Land Use and Land Cover Mapping with Optical and SAR Data , 2019, Remote. Sens..

[13]  Wei Wu,et al.  Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data , 2017, Remote. Sens..

[14]  Li Feng,et al.  Adaptive Scale Selection for Multiscale Segmentation of Satellite Images , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[15]  Gui-Song Xia,et al.  Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery , 2015, Remote. Sens..

[16]  Alexandre Bouvet,et al.  Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications , 2017 .

[17]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[18]  Bo Du,et al.  Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art , 2016, IEEE Geoscience and Remote Sensing Magazine.

[19]  Tao Zhou,et al.  Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region , 2017, Sensors.

[20]  Rasmus Nyholm Jørgensen,et al.  A Novel Spatio-Temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images , 2019, Remote. Sens..

[21]  Henning Skriver,et al.  Crop Classification by Multitemporal C- and L-Band Single- and Dual-Polarization and Fully Polarimetric SAR , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Martha C. Anderson,et al.  Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery , 2017 .

[23]  Min Wang,et al.  Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification , 2018, International Journal of Remote Sensing.

[24]  Liangpei Zhang,et al.  Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification , 2017, Remote. Sens..

[25]  Jefersson Alex dos Santos,et al.  Towards better exploiting convolutional neural networks for remote sensing scene classification , 2016, Pattern Recognit..

[26]  Jungho Im,et al.  Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data , 2018, Remote. Sens..

[27]  David Hernández-López,et al.  Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin , 2019, Agricultural Systems.

[28]  B. Brisco,et al.  Rice monitoring and production estimation using multitemporal RADARSAT , 2001 .

[29]  Qingshan Liu,et al.  Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification , 2017, Remote. Sens..

[30]  Hang Zhou,et al.  Deep learning based multi-temporal crop classification , 2019, Remote Sensing of Environment.

[31]  Emile Ndikumana,et al.  Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France , 2018, Remote. Sens..

[32]  Yang Liu,et al.  Study on Multi-Scale Window Determination for GLCM Texture Description in High-Resolution Remote Sensing Image Geo-Analysis Supported by GIS and Domain Knowledge , 2018, ISPRS Int. J. Geo Inf..

[33]  Claire Marais-Sicre,et al.  Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series , 2016, Remote. Sens..

[34]  Hongwei Liu,et al.  Convolutional Neural Network With Data Augmentation for SAR Target Recognition , 2016, IEEE Geoscience and Remote Sensing Letters.

[35]  Liping Di,et al.  Object-Based Plastic-Mulched Landcover Extraction Using Integrated Sentinel-1 and Sentinel-2 Data , 2018, Remote. Sens..

[36]  Hany M. Harb,et al.  Evaluation of the discrimination capability of full polarimetric SAR data for crop classification , 2016 .

[37]  Mryka Hall-Beyer,et al.  Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales , 2017 .

[38]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .