Thermally induced Ostwald ripening of mesoporous Ge nanostructures

Mesoporous germanium (Ge) is a new nanostructured material with a very high potential for numerous applications. Thermally induced structural evolution of this nanomaterial is a key point for many high-temperature processes, such as epitaxy, for example, in which it can be involved. In this work, we investigate these structural changes occurring during thermal annealing in vacuum in temperature range between 250 and 650 °C. The influences of the annealing temperature and time as well as of the initial porous layer thickness on the morphology reorganization of the mesoporous Ge layer are described in detail. The obtained results are discussed in terms of Lifshitz-Slyozov-Wagner theory.

[1]  V. Aimez,et al.  Mesoporous Germanium formed by bipolar electrochemical etching , 2013 .

[2]  R. Brendel,et al.  Sintering and reorganization of electrochemically etched mesoporous germanium layers in various atmospheres , 2011 .

[3]  S. Cloutier,et al.  Direct-bandgap luminescence at room-temperature from highly-strained Germanium nanocrystals. , 2010, Optics express.

[4]  R. Brendel,et al.  Formation of mesoporous germanium double layers by electrochemical etching for layer transfer processes , 2010 .

[5]  R. Brendel,et al.  Mesoporous Germanium Formation by Electrochemical Etching , 2009 .

[6]  R. Turan,et al.  Structural and optical properties of porous nanocrystalline Ge , 2008 .

[7]  H. Zeng Ostwald Ripening: A Synthetic Approach for Hollow Nanomaterials , 2007 .

[8]  R. Ganeev,et al.  Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation , 2007 .

[9]  F. Rosei,et al.  A novel approach to the synthesis of photoluminescent germanium nanoparticles by reactive laser ablation , 2006 .

[10]  H. Föll,et al.  Electrochemical pore etching in germanium , 2006 .

[11]  Y. Ekinci,et al.  Can chemically etched germanium or germanium nanocrystals emit visible photoluminescence? , 2005 .

[12]  Oliver G. Schmidt,et al.  Universal shapes of self-organized semiconductor quantum dots , 2004 .

[13]  R. Brendel,et al.  Evolution of the microstructure during annealing of porous silicon multilayers , 2004 .

[14]  R. Brendel,et al.  Structural changes in porous silicon during annealing , 2003 .

[15]  R. Brendel,et al.  Sintering of porous silicon , 2003 .

[16]  A. Yakimov,et al.  Phononless hopping conduction in two-dimensional layers of quantum dots , 2003 .

[17]  Richard J. Curry,et al.  On the origin of the 2.2-2.3 eV photoluminescence from chemically etched germanium , 2003 .

[18]  Wei Cheng,et al.  Calculations of surface effects on phonon modes and Raman intensities of Ge quantum dots , 2002 .

[19]  Friedhelm Bechstedt,et al.  Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction , 2002 .

[20]  Y. Ogata,et al.  Structural change in p-type porous silicon by thermal annealing , 2001 .

[21]  Lynn A. Boatner,et al.  Nanocomposite Materials Formed by Ion Implantation , 2001 .

[22]  R. Brendel,et al.  Simulated Annealing of Porous Silicon , 2000 .

[23]  David Smith,et al.  Evolution of Ge/Si(100) islands: Island size and temperature dependence , 2000 .

[24]  J. Buriak,et al.  Preparation and functionalization of hydride terminated porous germanium , 2000 .

[25]  Ralf B. Bergmann,et al.  Quasi-monocrystalline silicon for thin-film devices , 1999 .

[26]  L. Kiss,et al.  New approach to the origin of lognormal size distributions of nanoparticles , 1999 .

[27]  J. Budai,et al.  Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices , 1995 .

[28]  J. Heath,et al.  Germanium quantum dots: Optical properties and synthesis , 1994 .

[29]  P. Fauchet The Raman Line Shape of Semiconductor Nanocrystals , 1991 .

[30]  V. Labunov,et al.  Heat treatment effect on porous silicon , 1986 .

[31]  K. Barla,et al.  Microstructure of Porous silicon and its evolution with temperature , 1984 .

[32]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .