A 0.42-mW 1-Mb/s 3- to 4-GHz Transceiver in 0.18- $\mu \text{m}$ CMOS With Flexible Efficiency, Bandwidth, and Distance Control for IoT Applications

This paper describes a short-range transceiver architecture using frequency-hopped sinusoidal OOK pulses. Since signal bandwidth does not necessarily have to satisfy >500 MHz requirement like conventional ultra-wideband (UWB) pulses, the proposed transceiver named as a very-wide band (VWB) transceiver offers degrees of freedom to choose an optimum operation duty cycle in terms of energy efficiency, bandwidth efficiency, and communication range, while providing much lower operation duty cycle than that of narrow band OOK transceiver. The VWB transmission significantly relaxes the complexity of transceiver design without requiring advanced CMOS technology. In the transmitter, pulse generation circuit design is simplified with the duty-cycled sinusoidal signal compared to that in the impulse-radio UWB (IR-UWB) transmitter. In the receiver, an asynchronous energy detection topology is proposed to achieve robust energy detection by overcoming the synchronization issue as well as the saturation problem of the integrator circuit. A prototype 3-to-4 GHz VWB transceiver is implemented in 0.18 $\mu \text{m}$ CMOS. The transceiver achieves the communication distance of >2 m at 1 Mb/s data rate with the peak-to-peak pulse amplitude of only 300 mV and the duty cycle of 0.6%, consuming 0.42 mW from a 1.8 V supply.

[1]  Hannu Tenhunen,et al.  A Low-Power and Flexible Energy Detection IR-UWB Receiver for RFID and Wireless Sensor Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Jan M. Rabaey,et al.  A 2GHz 52 μW Wake-Up Receiver with -72dBm Sensitivity Using Uncertain-IF Architecture , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[3]  Yen-Kuang Chen,et al.  Challenges and opportunities of internet of things , 2012, 17th Asia and South Pacific Design Automation Conference.

[4]  Ramesh Harjani,et al.  An IEEE 802.15.6 Standard Compliant 2.5 nJ/Bit Multiband WBAN Transmitter Using Phase Multiplexing and Injection Locking , 2015, IEEE Journal of Solid-State Circuits.

[5]  Xiaojun Yuan,et al.  A Low SIR Impulse-UWB Transceiver Utilizing Chirp FSK in 0.18 $\mu{\rm m}$ CMOS , 2010, IEEE Journal of Solid-State Circuits.

[6]  Guido Dolmans,et al.  A 1.9nJ/b 2.4GHz multistandard (Bluetooth Low Energy/Zigbee/IEEE802.15.6) transceiver for personal/body-area networks , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[7]  Seok-Kyun Han,et al.  Energy-Efficient Low-Complexity CMOS Pulse Generator for Multiband UWB Impulse Radio , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Laurent Ouvry,et al.  A 1.1nJ/b 802.15.4a-compliant fully integrated UWB transceiver in 0.13µm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Jonathan D. Zuegel,et al.  Distributed Waveform Generator: A New Circuit Technique for Ultra-Wideband Pulse Generation, Shaping and Modulation , 2009, IEEE Journal of Solid-State Circuits.

[10]  Ranjit Gharpurey,et al.  A pulsed UWB transmitter and receiver with 4-element beamforming for 1-Gbps meter-range WPAN applications , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[11]  Liang-Hung Lu,et al.  A wideband programmable-gain amplifier for 60GHz applications in 65nm CMOS , 2013, 2013 International Symposium onVLSI Design, Automation, and Test (VLSI-DAT).

[12]  Zhihua Wang,et al.  9.3 A 1mW 1Mb/s 7.75-to-8.25GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[13]  Marco Crepaldi,et al.  An Ultra-Low-Power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[14]  Xiaoyan Wang,et al.  A 2.4GHz/915MHz 51µW wake-up receiver with offset and noise suppression , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[15]  Zhi Ning Chen,et al.  Ultra Wideband Wireless Communication , 2005 .

[16]  Guido Dolmans,et al.  A 780–950 MHz, 64–146 µW Power-Scalable Synchronized-Switching OOK Receiver for Wireless Event-Driven Applications , 2014, IEEE Journal of Solid-State Circuits.

[17]  A.P. Chandrakasan,et al.  A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[18]  Zhi Ning Chen,et al.  Ultra Wideband Wireless Communication: Arslan/Ultra Wideband Wireless Communication , 2006 .

[19]  John R. Long,et al.  A Short Range, Low Data Rate, 7.2 GHz-7.7 GHz FM-UWB Receiver Front-End , 2009, IEEE Journal of Solid-State Circuits.

[20]  John R. Long,et al.  A Fully Integrated Wideband FM Transceiver for Low Data Rate Autonomous Systems , 2015, IEEE Journal of Solid-State Circuits.

[21]  Yuanjin Zheng,et al.  A 3.54 nJ/bit-RX, 0.671 nJ/bit-TX Burst Mode Super-Regenerative UWB Transceiver in 0.18-$\mu{\rm m}$ CMOS , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  T. Hui Teo,et al.  A low-power comparator with programmable hysteresis level for blood pressure peak detection , 2009, TENCON 2009 - 2009 IEEE Region 10 Conference.

[23]  Mario Konijnenburg,et al.  A meter-range UWB transceiver chipset for around-the-head audio streaming , 2012, 2012 IEEE International Solid-State Circuits Conference.

[24]  Zhihua Wang,et al.  A 13.3 mW 500 Mb/s IR-UWB Transceiver With Link Margin Enhancement Technique for Meter-Range Communications , 2014, IEEE Journal of Solid-State Circuits.

[25]  A. Molisch,et al.  IEEE 802.15.4a channel model-final report , 2004 .

[26]  Denis C. Daly,et al.  A Low-Voltage Energy-Sampling IR-UWB Digital Baseband Employing Quadratic Correlation , 2010, IEEE Journal of Solid-State Circuits.

[27]  Manuel Delgado-Restituto,et al.  A 1.1-mW-RX ${-}{\hbox{81.4}}$ -dBm Sensitivity CMOS Transceiver for Bluetooth Low Energy , 2013, IEEE Transactions on Microwave Theory and Techniques.

[28]  Cem Ersoy,et al.  Wake-up receivers for wireless sensor networks: benefits and challenges , 2009, IEEE Wireless Communications.

[29]  David Blaauw,et al.  A 5.8 nW CMOS Wake-Up Timer for Ultra-Low-Power Wireless Applications , 2015, IEEE Journal of Solid-State Circuits.

[30]  Zhihua Wang,et al.  A Gated FM-UWB System With Data-Driven Front-End Power Control , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Peter R. Kinget,et al.  A self-duty-cycled and synchronized UWB receiver SoC consuming 375pJ/b for −76.5dBm sensitivity at 2Mb/s , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[32]  David Blaauw,et al.  26.7 A 10mm3 syringe-implantable near-field radio system on glass substrate , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[33]  Jan M. Rabaey,et al.  A 1Gb/s energy efficient triple-channel UWB-based cognitive radio , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[34]  Andrea Bevilacqua,et al.  A 5 Mb/s UWB-IR Transceiver Front-End for Wireless Sensor Networks in 0.13 $\mu{\hbox{m}}$ CMOS , 2011, IEEE Journal of Solid-State Circuits.

[35]  Oliver Chiu-sing Choy,et al.  A Fully Differential Band-Selective Low-Noise Amplifier for MB-OFDM UWB Receivers , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[36]  Yoshihiro Hayashi,et al.  13.4 A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[37]  Woogeun Rhee,et al.  A 3.8-mW 3.5–4-GHz Regenerative FM-UWB Receiver With Enhanced Linearity by Utilizing a Wideband LNA and Dual Bandpass Filters , 2013, IEEE Transactions on Microwave Theory and Techniques.