An SO(3)×SO(3) invariant solution of D = 11 supergravity
暂无分享,去创建一个
[1] A. Marrani,et al. Symplectic deformations of gauged maximal supergravity , 2014, 1405.2437.
[2] H. Nicolai,et al. Einstein-Cartan calculus for exceptional geometry , 2014, 1401.5984.
[3] Kanghoon Lee,et al. Spheres, Generalised Parallelisability and Consistent Truncations , 2014, 1401.3360.
[4] H. Nicolai,et al. The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions , 2013, 1312.1061.
[5] H. Nicolai,et al. Nonlinear Kaluza-Klein theory for dual fields , 2013, 1309.0266.
[6] H. Nicolai,et al. Generalised geometry from the ground up , 2013, 1307.8295.
[7] H. Nicolai,et al. Testing the nonlinear flux ansatz for maximal supergravity , 2013, 1303.1013.
[8] H. Nicolai,et al. Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions , 2013, 1302.6219.
[9] G. Dall’Agata,et al. Evidence for a family of SO8 gauged supergravity theories. , 2012, Physical review letters.
[10] H. Nicolai,et al. Consistent truncation of d = 11 supergravity on AdS4 × S7 , 2011, 1112.6131.
[11] A. Kundu,et al. Minimal holographic superconductors from maximal supergravity , 2011, 1110.3454.
[12] T. Fischbacher. The Encyclopedic Reference of Critical Points for SO(8)-Gauged N=8 Supergravity. Part 1: Cosmological Constants in the Range -\Lambda/g^2 \in [6:14.7) , 2011, 1109.1424.
[13] N. Warner,et al. New Supersymmetric and Stable, Non-Supersymmetric Phases in Supergravity and Holographic Field Theory , 2010, 1010.4910.
[14] N. Warner,et al. Supergravity instabilities of non-supersymmetric quantum critical points , 2010, 1006.2546.
[15] D. Waldram,et al. Consistent supersymmetric Kaluza-Klein truncations with massive modes , 2009, 0901.0676.
[16] H. Reall,et al. On the stability and spectrum of non-supersymmetric AdS 5 solutions of M-theory compactified on Kähler-Einstein spaces , 2008, 0810.2707.
[17] J. Maldacena,et al. N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.
[18] H. Samtleben,et al. The maximal D = 4 supergravities , 2007, 0705.2101.
[19] N. Warner,et al. A dielectric flow solution with maximal supersymmetry , 2003, hep-th/0304132.
[20] H. Samtleben,et al. On Lagrangians and gaugings of maximal supergravities , 2002, hep-th/0212239.
[21] N. Warner,et al. An N =2 Supersymmetric Membrane Flow , 2001, hep-th/0107220.
[22] H. Samtleben,et al. Compact and Noncompact Gauged Maximal Supergravities in Three Dimensions , 2001, hep-th/0103032.
[23] J. Vermaseren. New features of FORM , 2000, math-ph/0010025.
[24] E. Halyo. Supergravity on $AdS_{4/7} \times S^{7/4}$ and M Branes , 1998, hep-th/9803077.
[25] J. Bagger,et al. Supersymmetry and Supergravity , 1992 .
[26] Xenia de la Ossa,et al. Comments on Conifolds , 1990 .
[27] P. Nieuwenhuizen,et al. Compactifications ofd=11 supergravity on Kähler manifolds , 1989 .
[28] H. Nicolai,et al. The consistency of the S7 truncation in d=11 supergravity , 1987 .
[29] H. Nicolai,et al. d = 11 supergravity with local SU(8) invariance , 1986 .
[30] B. Dolan. The Kahler 2-form in D=11 supergravity , 1985 .
[31] N. Warner,et al. An SU(4) invariant compactification of d = 11 supergravity on a stretched seven-sphere , 1985 .
[32] H. Nicolai,et al. A new SO(7) invariant solution of d = 11 supergravity , 1984 .
[33] D. Page,et al. Stability analysis of compactifications of D = 11 supergravity with SU(3) × SU(2) × U(1) symmetry☆ , 1984 .
[34] H. Nicolai,et al. On the relation between d = 4 and d = 11 supergravity , 1984 .
[35] H. Nicolai,et al. The parallelizing S7 torsion in gauged N=8 supergravity , 1984 .
[36] N. Warner. Some properties of the scalar potential in gauged supergravity theories , 1984 .
[37] H. Nicolai,et al. Gauged N = 8 supergravity and its breaking from spontaneous compactification , 1983 .
[38] F. Englert. Spontaneous compactification of eleven-dimensional supergravity☆ , 1982 .
[39] D. Freedman,et al. Stability in Gauged Extended Supergravity , 1982 .
[40] H. Nicolai,et al. N = 8 supergravity , 1982 .
[41] M. Rubin,et al. Dynamics of dimensional reduction , 1980 .
[42] E. Cremmer,et al. The SO(8) supergravity , 1979 .
[43] E. Cremmer,et al. The N = 8 supergravity theory. I. The lagrangian , 1978 .
[44] E. Cremmer,et al. Supergravity in theory in 11 dimensions , 1978 .
[45] F. Tangherlini. Schwarzschild field inn dimensions and the dimensionality of space problem , 1963 .
[46] N. Warner,et al. Two new classes of compactifications of d=11 supergravity , 1985 .
[47] H. Nicolai,et al. The Embedding of Gauged $N=8$ Supergravity Into $d=11$ Supergravity , 1985 .
[48] M. Duff,et al. Kaluza - Klein supergravity and the seven sphere , 1983 .
[49] E. Cremmer. N = 8 Supergravity , 1980 .
[50] John W. Hutchinson,et al. Stability Analysis of J -Controlled Crack Growth , 1979 .
[51] H. Samtleben,et al. Maximal gauged supergravity in three dimensions , 2022 .