An SO(3)×SO(3) invariant solution of D = 11 supergravity

[1]  A. Marrani,et al.  Symplectic deformations of gauged maximal supergravity , 2014, 1405.2437.

[2]  H. Nicolai,et al.  Einstein-Cartan calculus for exceptional geometry , 2014, 1401.5984.

[3]  Kanghoon Lee,et al.  Spheres, Generalised Parallelisability and Consistent Truncations , 2014, 1401.3360.

[4]  H. Nicolai,et al.  The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions , 2013, 1312.1061.

[5]  H. Nicolai,et al.  Nonlinear Kaluza-Klein theory for dual fields , 2013, 1309.0266.

[6]  H. Nicolai,et al.  Generalised geometry from the ground up , 2013, 1307.8295.

[7]  H. Nicolai,et al.  Testing the nonlinear flux ansatz for maximal supergravity , 2013, 1303.1013.

[8]  H. Nicolai,et al.  Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions , 2013, 1302.6219.

[9]  G. Dall’Agata,et al.  Evidence for a family of SO8 gauged supergravity theories. , 2012, Physical review letters.

[10]  H. Nicolai,et al.  Consistent truncation of d = 11 supergravity on AdS4 × S7 , 2011, 1112.6131.

[11]  A. Kundu,et al.  Minimal holographic superconductors from maximal supergravity , 2011, 1110.3454.

[12]  T. Fischbacher The Encyclopedic Reference of Critical Points for SO(8)-Gauged N=8 Supergravity. Part 1: Cosmological Constants in the Range -\Lambda/g^2 \in [6:14.7) , 2011, 1109.1424.

[13]  N. Warner,et al.  New Supersymmetric and Stable, Non-Supersymmetric Phases in Supergravity and Holographic Field Theory , 2010, 1010.4910.

[14]  N. Warner,et al.  Supergravity instabilities of non-supersymmetric quantum critical points , 2010, 1006.2546.

[15]  D. Waldram,et al.  Consistent supersymmetric Kaluza-Klein truncations with massive modes , 2009, 0901.0676.

[16]  H. Reall,et al.  On the stability and spectrum of non-supersymmetric AdS 5 solutions of M-theory compactified on Kähler-Einstein spaces , 2008, 0810.2707.

[17]  J. Maldacena,et al.  N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals , 2008, 0806.1218.

[18]  H. Samtleben,et al.  The maximal D = 4 supergravities , 2007, 0705.2101.

[19]  N. Warner,et al.  A dielectric flow solution with maximal supersymmetry , 2003, hep-th/0304132.

[20]  H. Samtleben,et al.  On Lagrangians and gaugings of maximal supergravities , 2002, hep-th/0212239.

[21]  N. Warner,et al.  An N =2 Supersymmetric Membrane Flow , 2001, hep-th/0107220.

[22]  H. Samtleben,et al.  Compact and Noncompact Gauged Maximal Supergravities in Three Dimensions , 2001, hep-th/0103032.

[23]  J. Vermaseren New features of FORM , 2000, math-ph/0010025.

[24]  E. Halyo Supergravity on $AdS_{4/7} \times S^{7/4}$ and M Branes , 1998, hep-th/9803077.

[25]  J. Bagger,et al.  Supersymmetry and Supergravity , 1992 .

[26]  Xenia de la Ossa,et al.  Comments on Conifolds , 1990 .

[27]  P. Nieuwenhuizen,et al.  Compactifications ofd=11 supergravity on Kähler manifolds , 1989 .

[28]  H. Nicolai,et al.  The consistency of the S7 truncation in d=11 supergravity , 1987 .

[29]  H. Nicolai,et al.  d = 11 supergravity with local SU(8) invariance , 1986 .

[30]  B. Dolan The Kahler 2-form in D=11 supergravity , 1985 .

[31]  N. Warner,et al.  An SU(4) invariant compactification of d = 11 supergravity on a stretched seven-sphere , 1985 .

[32]  H. Nicolai,et al.  A new SO(7) invariant solution of d = 11 supergravity , 1984 .

[33]  D. Page,et al.  Stability analysis of compactifications of D = 11 supergravity with SU(3) × SU(2) × U(1) symmetry☆ , 1984 .

[34]  H. Nicolai,et al.  On the relation between d = 4 and d = 11 supergravity , 1984 .

[35]  H. Nicolai,et al.  The parallelizing S7 torsion in gauged N=8 supergravity , 1984 .

[36]  N. Warner Some properties of the scalar potential in gauged supergravity theories , 1984 .

[37]  H. Nicolai,et al.  Gauged N = 8 supergravity and its breaking from spontaneous compactification , 1983 .

[38]  F. Englert Spontaneous compactification of eleven-dimensional supergravity☆ , 1982 .

[39]  D. Freedman,et al.  Stability in Gauged Extended Supergravity , 1982 .

[40]  H. Nicolai,et al.  N = 8 supergravity , 1982 .

[41]  M. Rubin,et al.  Dynamics of dimensional reduction , 1980 .

[42]  E. Cremmer,et al.  The SO(8) supergravity , 1979 .

[43]  E. Cremmer,et al.  The N = 8 supergravity theory. I. The lagrangian , 1978 .

[44]  E. Cremmer,et al.  Supergravity in theory in 11 dimensions , 1978 .

[45]  F. Tangherlini Schwarzschild field inn dimensions and the dimensionality of space problem , 1963 .

[46]  N. Warner,et al.  Two new classes of compactifications of d=11 supergravity , 1985 .

[47]  H. Nicolai,et al.  The Embedding of Gauged $N=8$ Supergravity Into $d=11$ Supergravity , 1985 .

[48]  M. Duff,et al.  Kaluza - Klein supergravity and the seven sphere , 1983 .

[49]  E. Cremmer N = 8 Supergravity , 1980 .

[50]  John W. Hutchinson,et al.  Stability Analysis of J -Controlled Crack Growth , 1979 .

[51]  H. Samtleben,et al.  Maximal gauged supergravity in three dimensions , 2022 .