Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-scale/Irregular Geometric Representation and Generalized Linear Programming
暂无分享,去创建一个
Antoine Vacavant | Bertrand Kerautret | Tristan Roussillon | Fabien Feschet | A. Vacavant | B. Kerautret | Tristan Roussillon | F. Feschet | Bertrand Kerautret
[1] Gongning Luo,et al. A graph-based method for fitting planar B-spline curves with intersections , 2016, J. Comput. Des. Eng..
[2] Jacques-Olivier Lachaud,et al. Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs , 2011, IWCIA.
[3] Laure Tougne,et al. Topological and Geometrical Reconstruction of Complex Objects on Irregular Isothetic Grids , 2006, DGCI.
[4] Laure Tougne,et al. Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature , 1999, DGCI.
[5] Antoine Vacavant,et al. Arc Recognition on Irregular Isothetic Grids and Its Application to Reconstruction of Noisy Digital Contours , 2013, DGCI.
[6] Jacques-Olivier Lachaud,et al. Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Jean-Michel Morel,et al. Secrets of image denoising cuisine* , 2012, Acta Numerica.
[8] Jacques-Olivier Lachaud,et al. Meaningful Scales Detection: an Unsupervised Noise Detection Algorithm for Digital Contours , 2014, Image Process. Line.
[9] Geoff A. W. West,et al. Nonparametric Segmentation of Curves into Various Representations , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Joseph O'Rourke,et al. An on-line algorithm for fitting straight lines between data ranges , 1981, CACM.
[11] Antoine Vacavant. A Novel Definition of Robustness for Image Processing Algorithms , 2016, RRPR@ICPR.
[12] Kazuhiko Yamamoto,et al. Structured Document Image Analysis , 1992, Springer Berlin Heidelberg.
[13] Jacques-Olivier Lachaud,et al. Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. (Non-Euclidean spaces and image analysis : Riemannian and discrete deformable models, discrete topology and geometry) , 2006 .
[14] Isabelle Debled-Rennesson,et al. Adaptive Tangential Cover for Noisy Digital Contours , 2016, DGCI.
[15] Thanh Phuong Nguyen,et al. Decomposition of a Curve into Arcs and Line Segments Based on Dominant Point Detection , 2011, SCIA.
[16] Xiaoming Hu,et al. Contour reconstruction using recursive smoothing splines - Algorithms and experimental validation , 2009, Robotics Auton. Syst..
[17] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[18] Nina Amenta,et al. Helly-type theorems and Generalized Linear Programming , 1994, Discret. Comput. Geom..
[19] Jacques-Olivier Lachaud,et al. A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours , 2013, Comput. Vis. Image Underst..
[20] Laure Tougne,et al. On the min DSS problem of closed discrete curves , 2003, Discret. Appl. Math..
[21] Alexandre Faure,et al. Multi-primitive Analysis of Digital Curves , 2009, IWCIA.
[22] Micha Sharir,et al. A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.
[23] D. T. Lee,et al. An optimal algorithm for shortest paths on weighted interval and circular-arc graphs, with applications , 1993, Algorithmica.
[24] Oliver Wirjadi,et al. Survey of 3d image segmentation methods , 2007 .
[25] Karl Tombre,et al. Robust and accurate vectorization of line drawings , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[26] A. Ardeshir Goshtasby,et al. Fitting Parametric Curves to Dense and Noisy Points , 2000 .