Sub-Doppler optical-optical double-resonance spectroscopy of BaO: Electronic structure in the 4-eV region
暂无分享,去创建一个
R. Gottscho | P. Weiss | R. Field | J. Pruett
[1] R. Gottscho,et al. Optical-Optical Double-Resonance Spectroscopy of CaF , 1980 .
[2] R. Gottscho,et al. Simultaneous measurement of rotational and translational relaxation by sub‐Doppler optical–optical double resonance spectroscopy: BaO(A 1Σ+)–Ar and BaO(A1Σ+)–CO2 , 1980 .
[3] S. Gerstenkorn,et al. Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy , 1979 .
[4] R. Gottscho. The lowest energy excited electronic state of BaO , 1979 .
[5] J. Pruett,et al. Populations of BaO states in the Ba+N2O chemiluminescent flame using the BaO C 1Σ+ state as a probe , 1979 .
[6] R. Gottscho,et al. Assignment of extra lines in a perturbed band spectrum using power broadened line widths , 1978 .
[7] L. Berg,et al. Observations of Two Photon Absorption in Gaseous CaCl. A Study of the D 2Σ and X 2Σ States , 1978 .
[8] D. O. Harris,et al. Optical–optical double resonance with two dye lasers: Rotational analysis of the E 2Σ–B2Σ system of Ca35Cl , 1978 .
[9] R. Gottscho,et al. OODR spectroscopy of BaO. II. New observations of a 3Π and A′ 1Π and re‐examination of the Parkinson band system , 1978 .
[10] P. Dagdigian. Determination of the absolute chemiluminescence cross section and photon yield for the Ca(4s4p 3P) + N2O reaction , 1978 .
[11] G. Winnewisser,et al. MILLIMETER WAVE SPECTRA OF THE ALKALINE EARTH METAL OXIDES: BaO, SrO and CaO , 1978 .
[12] R. Zare,et al. Determination of absolute photon yields under single‐collision conditions , 1977 .
[13] D. O. Harris,et al. A microwave optical double resonance Stark effect measurement of the dipole moment of A1Σ+ BaO , 1977 .
[14] G. Gerber,et al. Electronic states and molecular constants of Bi2 , 1976 .
[15] S. Benson,et al. Chemiluminescence studies. IV. Pressure‐dependent photon yields for Ba, Sm, and Eu reactions with N2O, O3, O2, F2, and NF3 , 1975 .
[16] R. Field,et al. Optical–optical double resonance laser spectroscopy of BaO , 1975 .
[17] R. Field,et al. Photon yields of several reactions producing diatomic strontium oxide and halides, and SrO (A′ 1Π–X 1Σ): A new band system , 1975 .
[18] R. Field,et al. Reply to Comment by D. Husain and J. R. Wiesenfeld on ’’Gas phase reaction of Ba with N2O. II. Mechanism of reaction’’ , 1975 .
[19] D. Husain,et al. Comments on ’’Gas‐phase reaction of Ba + N2O. II. Mechanism of reaction’’ , 1975 .
[20] Richard N. Zare,et al. The labeling of parity doublet levels in linear molecules , 1975 .
[21] J. West,et al. Flow system for the production of diatomic metal oxides and halides , 1975 .
[22] G. Capelle,et al. Photon yields and spectra resulting from reactions of Ca with oxidants , 1974 .
[23] T. Törring,et al. Rotationsspektrum von BaO / Rotational Spectrum of BaO , 1974 .
[24] C. Hsu,et al. Pressure dependence of the A(1Σ)→X(1Σ) photon yield in the reactions of Ba(g) with N2O and NO2 , 1974 .
[25] C. Jones,et al. Gas‐phase reaction of Ba with N2O. I. Measurement of production efficiency of excited states , 1974 .
[26] R. Field,et al. Gas‐phase reaction of Ba with N2O. II. Mechanism of reaction , 1974 .
[27] A. Bloom,et al. Modes of a laser resonator containing tilted birefringent plates , 1974 .
[28] S. Benson,et al. Chemiluminescence photon yields for several alkaline earth metal‐halogen/oxygen reactions , 1974 .
[29] R. Field. Assignment of the lowest 3Π and 1Π states of CaO, SrO, and BaO , 1974 .
[30] R. Zare,et al. A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials , 1973 .
[31] Erich P. Ippen,et al. Astigmatically compensated cavities for CW dye lasers , 1972 .
[32] S. Johnson. Measured Radiative Lifetimes and Electronic Quenching Cross Sections of BaO(A1Σ) , 1972 .
[33] W. Richards,et al. Molecular Spin–Orbit Coupling Constants. The Role of Core Polarization , 1970 .
[34] K. Dressler. The lowest valence and Rydberg states in the dipole-allowed absorption spectrum of nitrogen - A survey of their interactions. , 1969 .
[35] H. Lefebvre-Brion. Theoretical study of homogeneous perturbations. II. Least-squares fitting method to obtain , 1969 .
[36] P. Felenbok,et al. ÉTUDE THÉORIQUE DES PERTURBATIONS HOMOGÈNES : I. APPLICATION AUX INTERACTIONS Π–Π ET Δ–Δ DE NO , 1966 .
[37] A. Lagerqvist,et al. ABSORPTION SPECTRUM OF THE NO MOLECULE: VI. BAND STRUCTURES BELOW 1 600 Å, RYDBERG STATES C2Π, D2Σ+, K2Π, M2Σ+, S2Σ+, NON-RYDBERG STATES B2Π, L2Π AND THEIR INTERACTIONS , 1966 .
[38] R. Zare,et al. Charge transfer model for alkali halide electronic transition strengths , 1965 .
[39] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[40] W. Klemperer,et al. ELECTRIC RESONANCE SPECTRUM AND DIPOLE MOMENT OF BaO , 1962 .
[41] G. Herzberg,et al. Spectra of diatomic molecules , 1950 .
[42] R. Rydberg. Über einige Potentialkurven des Quecksilberhydrids , 1933 .
[43] J. L. Dunham. The Energy Levels of a Rotating Vibrator , 1932 .
[44] Ragnar Rydberg,et al. Graphische Darstellung einiger bandenspektroskopischer Ergebnisse , 1932 .
[45] O. Klein,et al. Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen , 1932 .
[46] E. Condon,et al. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules , 1928 .