Sub-Doppler optical-optical double-resonance spectroscopy of BaO: Electronic structure in the 4-eV region

[1]  R. Gottscho,et al.  Optical-Optical Double-Resonance Spectroscopy of CaF , 1980 .

[2]  R. Gottscho,et al.  Simultaneous measurement of rotational and translational relaxation by sub‐Doppler optical–optical double resonance spectroscopy: BaO(A 1Σ+)–Ar and BaO(A1Σ+)–CO2 , 1980 .

[3]  S. Gerstenkorn,et al.  Absolute iodine (I2) standards measured by means of Fourier transform spectroscopy , 1979 .

[4]  R. Gottscho The lowest energy excited electronic state of BaO , 1979 .

[5]  J. Pruett,et al.  Populations of BaO states in the Ba+N2O chemiluminescent flame using the BaO C 1Σ+ state as a probe , 1979 .

[6]  R. Gottscho,et al.  Assignment of extra lines in a perturbed band spectrum using power broadened line widths , 1978 .

[7]  L. Berg,et al.  Observations of Two Photon Absorption in Gaseous CaCl. A Study of the D 2Σ and X 2Σ States , 1978 .

[8]  D. O. Harris,et al.  Optical–optical double resonance with two dye lasers: Rotational analysis of the E 2Σ–B2Σ system of Ca35Cl , 1978 .

[9]  R. Gottscho,et al.  OODR spectroscopy of BaO. II. New observations of a 3Π and A′ 1Π and re‐examination of the Parkinson band system , 1978 .

[10]  P. Dagdigian Determination of the absolute chemiluminescence cross section and photon yield for the Ca(4s4p 3P) + N2O reaction , 1978 .

[11]  G. Winnewisser,et al.  MILLIMETER WAVE SPECTRA OF THE ALKALINE EARTH METAL OXIDES: BaO, SrO and CaO , 1978 .

[12]  R. Zare,et al.  Determination of absolute photon yields under single‐collision conditions , 1977 .

[13]  D. O. Harris,et al.  A microwave optical double resonance Stark effect measurement of the dipole moment of A1Σ+ BaO , 1977 .

[14]  G. Gerber,et al.  Electronic states and molecular constants of Bi2 , 1976 .

[15]  S. Benson,et al.  Chemiluminescence studies. IV. Pressure‐dependent photon yields for Ba, Sm, and Eu reactions with N2O, O3, O2, F2, and NF3 , 1975 .

[16]  R. Field,et al.  Optical–optical double resonance laser spectroscopy of BaO , 1975 .

[17]  R. Field,et al.  Photon yields of several reactions producing diatomic strontium oxide and halides, and SrO (A′ 1Π–X 1Σ): A new band system , 1975 .

[18]  R. Field,et al.  Reply to Comment by D. Husain and J. R. Wiesenfeld on ’’Gas phase reaction of Ba with N2O. II. Mechanism of reaction’’ , 1975 .

[19]  D. Husain,et al.  Comments on ’’Gas‐phase reaction of Ba + N2O. II. Mechanism of reaction’’ , 1975 .

[20]  Richard N. Zare,et al.  The labeling of parity doublet levels in linear molecules , 1975 .

[21]  J. West,et al.  Flow system for the production of diatomic metal oxides and halides , 1975 .

[22]  G. Capelle,et al.  Photon yields and spectra resulting from reactions of Ca with oxidants , 1974 .

[23]  T. Törring,et al.  Rotationsspektrum von BaO / Rotational Spectrum of BaO , 1974 .

[24]  C. Hsu,et al.  Pressure dependence of the A(1Σ)→X(1Σ) photon yield in the reactions of Ba(g) with N2O and NO2 , 1974 .

[25]  C. Jones,et al.  Gas‐phase reaction of Ba with N2O. I. Measurement of production efficiency of excited states , 1974 .

[26]  R. Field,et al.  Gas‐phase reaction of Ba with N2O. II. Mechanism of reaction , 1974 .

[27]  A. Bloom,et al.  Modes of a laser resonator containing tilted birefringent plates , 1974 .

[28]  S. Benson,et al.  Chemiluminescence photon yields for several alkaline earth metal‐halogen/oxygen reactions , 1974 .

[29]  R. Field Assignment of the lowest 3Π and 1Π states of CaO, SrO, and BaO , 1974 .

[30]  R. Zare,et al.  A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials , 1973 .

[31]  Erich P. Ippen,et al.  Astigmatically compensated cavities for CW dye lasers , 1972 .

[32]  S. Johnson Measured Radiative Lifetimes and Electronic Quenching Cross Sections of BaO(A1Σ) , 1972 .

[33]  W. Richards,et al.  Molecular Spin–Orbit Coupling Constants. The Role of Core Polarization , 1970 .

[34]  K. Dressler The lowest valence and Rydberg states in the dipole-allowed absorption spectrum of nitrogen - A survey of their interactions. , 1969 .

[35]  H. Lefebvre-Brion Theoretical study of homogeneous perturbations. II. Least-squares fitting method to obtain , 1969 .

[36]  P. Felenbok,et al.  ÉTUDE THÉORIQUE DES PERTURBATIONS HOMOGÈNES : I. APPLICATION AUX INTERACTIONS Π–Π ET Δ–Δ DE NO , 1966 .

[37]  A. Lagerqvist,et al.  ABSORPTION SPECTRUM OF THE NO MOLECULE: VI. BAND STRUCTURES BELOW 1 600 Å, RYDBERG STATES C2Π, D2Σ+, K2Π, M2Σ+, S2Σ+, NON-RYDBERG STATES B2Π, L2Π AND THEIR INTERACTIONS , 1966 .

[38]  R. Zare,et al.  Charge transfer model for alkali halide electronic transition strengths , 1965 .

[39]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[40]  W. Klemperer,et al.  ELECTRIC RESONANCE SPECTRUM AND DIPOLE MOMENT OF BaO , 1962 .

[41]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[42]  R. Rydberg Über einige Potentialkurven des Quecksilberhydrids , 1933 .

[43]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[44]  Ragnar Rydberg,et al.  Graphische Darstellung einiger bandenspektroskopischer Ergebnisse , 1932 .

[45]  O. Klein,et al.  Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen , 1932 .

[46]  E. Condon,et al.  Nuclear Motions Associated with Electron Transitions in Diatomic Molecules , 1928 .