Substrate-Dependent Photoconductivity Dynamics in a High-Efficiency Hybrid Perovskite Alloy

Films of (FA0.79MA0.16Cs0.05)0.97Pb(I0.84Br0.16)2.97 were grown over TiO2, SnO2, indium tin oxide (ITO), and NiO. Film conductivity was interrogated by measuring the in-phase and out-of-phase forces acting between the film and a charged microcantilever. We followed the films’ conductivity versus time, frequency, light intensity, and temperature (233–312 K). Perovskite conductivity was high and light-independent over ITO and NiO. Over TiO2 and SnO2, the conductivity was low in the dark, increased with light intensity, and persisted for 10’s of seconds after the light was removed. At an elevated temperature over TiO2, the rate of conductivity recovery in the dark showed an activated temperature dependence (Ea = 0.58 eV). Surprisingly, the light-induced conductivity over TiO2 and SnO2 relaxed essentially instantaneously at a low temperature. We use a transmission-line model for mixed ionic–electronic conductors to show that the measurements presented are sensitive to the sum of electronic and ionic conductiv...

[1]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[2]  Charge carrier dynamics and interactions in electric force microscopy. , 2012, The Journal of chemical physics.

[3]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[4]  Qiong Wang Fast Voltage Decay in Perovskite Solar Cells Caused by Depolarization of Perovskite Layer , 2018 .

[5]  J. Marohn,et al.  Coupled Slow and Fast Charge Dynamics in Cesium Lead Bromide Perovskite , 2017 .

[6]  D. Ginger,et al.  Mapping nanoscale variations in photochemical damage of polymer/fullerene solar cells with dissipation imaging. , 2013, ACS nano.

[7]  J. Jamnik,et al.  Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions , 1999 .

[8]  D. Ginger,et al.  Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias , 2018 .

[9]  J. Marohn,et al.  Dielectric fluctuations and the origins of noncontact friction. , 2006, Physical review letters.

[10]  J. Marohn,et al.  Dielectric fluctuations in force microscopy: noncontact friction and frequency jitter. , 2008, The Journal of chemical physics.

[11]  Wei D. Lu,et al.  Iodine Vacancy Redistribution in Organic–Inorganic Halide Perovskite Films and Resistive Switching Effects , 2017, Advanced materials.

[12]  S. Kalinin,et al.  Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform , 2017, Microscopy and Microanalysis.

[13]  Rebecca A. Belisle,et al.  Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths , 2017 .

[14]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[15]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[16]  Jingyun Zhang,et al.  Local dielectric spectroscopy of polymer films , 2007 .

[17]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[18]  Crider Ps,et al.  Imaging nanoscale spatio-temporal thermal fluctuations. , 2006 .

[19]  D. Ginger,et al.  Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution. , 2016, The Review of scientific instruments.

[20]  Jinsong Huang,et al.  Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells , 2017, Science Advances.

[21]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[22]  Anders Hagfeldt,et al.  Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells , 2018 .

[23]  Alison B. Walker,et al.  Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy , 2015 .

[24]  Philip Schulz,et al.  Electronic Level Alignment in Inverted Organometal Perovskite Solar Cells , 2015 .

[25]  K. S. Tikhonov,et al.  Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements , 2016, Nature Communications.

[26]  Stephen Jesse,et al.  Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. , 2017, ACS nano.

[27]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[28]  Y. Qi,et al.  Research progress on organic–inorganic halide perovskite materials and solar cells , 2018 .

[29]  Justin L. Luria Spectroscopic Characterization Of Charge Generation And Trapping In Third-Generation Solar Cell Materials Using Wavelength- And Time-Resolved Electric Force Microscopy , 2011 .

[30]  J. Marohn,et al.  Noncontact dielectric friction. , 2006, The journal of physical chemistry. B.

[31]  Alex Dixon,et al.  Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface , 2018 .

[32]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[33]  Kai Zhu,et al.  Unipolar self-doping behavior in perovskite CH3NH3PbBr3 , 2015 .

[34]  G. Eperon,et al.  Charge Carriers in Planar and Meso-Structured Organic-Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. , 2015, The journal of physical chemistry letters.

[35]  M. Grätzel,et al.  Charge carrier chemistry in methylammonium lead iodide , 2018, Solid State Ionics.

[36]  A. Walsh,et al.  Taking Control of Ion Transport in Halide Perovskite Solar Cells , 2018, ACS Energy Letters.

[37]  M. Halik,et al.  Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. , 2018, ACS applied materials & interfaces.

[38]  T. Peltola,et al.  Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? , 2016 .

[39]  D. Ginger,et al.  Imaging Local Trap Formation in Conjugated Polymer Solar Cells: A Comparison of Time-Resolved Electrostatic Force Microscopy and Scanning Kelvin Probe Imaging† , 2010 .

[40]  M. Green,et al.  Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide , 2017, Nature Communications.

[41]  B. Rand,et al.  Ionic-Electronic Ambipolar Transport in Metal Halide Perovskites: Can Electronic Conductivity Limit Ionic Diffusion? , 2018, The journal of physical chemistry letters.

[42]  Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements , 2018, Materials Horizons.

[43]  D. Ginger,et al.  Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy , 2018, The Journal of Physical Chemistry C.

[44]  Aron Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites** , 2015, Angewandte Chemie.

[45]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[46]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[47]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[48]  J. Maier On the heterogeneous doping of ionic conductors , 1986 .

[49]  T. Kenny,et al.  Silicon dopant imaging by dissipation force microscopy , 1999 .

[50]  L. Wan,et al.  Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[51]  K. Meerholz,et al.  Substrate-dependent electronic structure and film formation of MAPbI3 perovskites , 2017, Scientific Reports.

[52]  Yongli Gao,et al.  Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing , 2014 .

[53]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[54]  J. Marohn,et al.  Dielectric fluctuations over polymer films detected using an atomic force microscope. , 2011, The journal of physical chemistry. B.

[55]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[56]  R. Holmes,et al.  Temperature‐Dependent Bias Poling and Hysteresis in Planar Organo‐Metal Halide Perovskite Photovoltaic Cells , 2016 .

[57]  F. Ciucci,et al.  Impedance spectra of mixed conductors: a 2D study of ceria. , 2009, Physical chemistry chemical physics : PCCP.

[58]  Michel W. Barsoum,et al.  Fundamentals of Ceramics , 1996 .

[59]  Arindam Mallick,et al.  High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO. , 2017, The journal of physical chemistry letters.

[60]  Yan-Qing Li,et al.  Recent Advances in Energetics of Metal Halide Perovskite Interfaces , 2017 .

[61]  Juan Bisquert,et al.  Surface Recombination and Collection Efficiency in Perovskite Solar Cells from Impedance Analysis. , 2016, The journal of physical chemistry letters.

[62]  Stephen Jesse,et al.  Time resolved surface photovoltage measurements using a big data capture approach to KPFM , 2018, Nanotechnology.

[63]  Mohammad Khaja Nazeeruddin,et al.  Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell , 2014, Nature Communications.

[64]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[65]  T. Kenny,et al.  Noncontact friction and force fluctuations between closely spaced bodies. , 2001, Physical review letters.

[66]  J. Luther,et al.  Substrate-controlled band positions in CH₃NH₃PbI₃ perovskite films. , 2014, Physical chemistry chemical physics : PCCP.

[67]  J. Ross Macdonald,et al.  Theory of space‐charge polarization and electrode‐discharge effects , 1973 .

[68]  J. Marohn,et al.  Microsecond photocapacitance transients observed using a charged microcantilever as a gated mechanical integrator , 2017, Science Advances.

[69]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[70]  M. Grätzel,et al.  The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach , 2017, Angewandte Chemie.

[71]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[72]  A. Clerk,et al.  Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy , 2009, Proceedings of the National Academy of Sciences.

[73]  Francesco Ciucci,et al.  Frequency dependent dynamical electromechanical response of mixed ionic-electronic conductors , 2012 .

[74]  A. Köhler,et al.  Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells , 2016, Advanced materials.

[75]  Ulrich Wiesner,et al.  Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. , 2015, Journal of the American Chemical Society.

[76]  G. Gomila,et al.  Nanoscale capacitance microscopy of thin dielectric films , 2008 .

[77]  J. Bisquert,et al.  Theory of Impedance and Capacitance Spectroscopy of Solar Cells with Dielectric Relaxation, Drift-Diffusion Transport, and Recombination , 2014 .

[78]  John A Marohn,et al.  Electric force microscopy of semiconductors: theory of cantilever frequency fluctuations and noncontact friction. , 2013, The Journal of chemical physics.

[79]  Jinsong Huang,et al.  Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells , 2017, Science Advances.

[80]  R. Bruce,et al.  Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film. , 2012, ACS nano.

[81]  J. Bisquert,et al.  Theory of Impedance Spectroscopy of Ambipolar Solar Cells with Trap-Mediated Recombination , 2014 .

[82]  H A Kreutzmann,et al.  [Fundamentals of ceramics]. , 1972, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik.

[83]  D. Ginger,et al.  Cantilever Ringdown Dissipation Imaging for the Study of Loss Processes in Polymer/Fullerene Solar Cells , 2016 .

[84]  B. Gorman,et al.  Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling. , 2017, ACS applied materials & interfaces.

[85]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[86]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[87]  S. Olthof Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices , 2016 .

[88]  S. Stranks Nonradiative Losses in Metal Halide Perovskites , 2017 .

[89]  M. Deepa,et al.  Identifying the charge generation dynamics in Cs+-based triple cation mixed perovskite solar cells. , 2017, Physical chemistry chemical physics : PCCP.

[90]  Riski Titian Ginting,et al.  Low-temperature operation of perovskite solar cells: With efficiency improvement and hysteresis-less , 2016 .

[91]  Winfried Denk,et al.  Local electrical dissipation imaged by scanning force microscopy , 1991 .

[92]  J. Marohn,et al.  Erratum: Publisher's note: Dielectric fluctuations and the origins of noncontact friction (Physical Review Letters (2006) 96 (156103)) , 2006 .

[93]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[94]  M. Labardi,et al.  Broadband local dielectric spectroscopy , 2016 .

[95]  Miao Hu,et al.  Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. , 2017, Nano letters.

[96]  Kazuo Fueki,et al.  Ionic conduction of the perovskite-type halides , 1983 .

[97]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[98]  Jeffrey A. Christians,et al.  A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells , 2018 .

[99]  Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices , 2015 .

[100]  Biochemistry,et al.  Lagrangian and Impedance-Spectroscopy Treatments of Electric Force Microscopy , 2018, Physical Review Applied.

[101]  Hong-Xing Zhang,et al.  Hole Trapping by Iodine Interstitial Defects Decreases Free Carrier Losses in Perovskite Solar Cells: A Time-Domain Ab Initio Study , 2017 .

[102]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[103]  M. Grätzel,et al.  Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition , 2018, Nature Materials.

[104]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[105]  Olivier Durand,et al.  Light-induced lattice expansion leads to high-efficiency perovskite solar cells , 2018, Science.

[106]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[107]  A. F. Tillack,et al.  Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. , 2012, Nano letters.

[108]  P. Delugas,et al.  Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and Ultrahigh Mobility of Iodine. , 2016, The journal of physical chemistry letters.

[109]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[110]  J. Bisquert,et al.  Light-Induced Space-Charge Accumulation Zone as Photovoltaic Mechanism in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[111]  K. Meerholz,et al.  Impact of Film Stoichiometry on the Ionization Energy and Electronic Structure of CH3NH3PbI3 Perovskites , 2016, Advanced materials.