Multilevel Numerical Algorithms and Experiments for Contact Dynamics

Nonlinear frictional contact problems are still a challenging task both from the mathematical and engineering point of view. These problems are of crucial importance in various applications. In this report we study dynamical contact problems on mathematical and experimental aspects. In the mathematical part we present a variationally consistent formulation based on mortar techniques with dual Lagrange multipliers for this type of problems. Furthermore, new optimal a priori and a posteriori error estimates were achieved, and numerical results for nearly incompressible materials are given. To solve the resulting nonlinear algebraic problem, we use a primal-dual active set strategy which can also be interpreted as semismooth Newton method. In combination with optimal multigrid methods, the inexact version of this approach can be regarded as a nonlinear multigrid method, and we end up with an efficient iterative solver. In the engineering part experiments to study the properties of the impact between a rotating disc and an elastic strip are presented. Experimental setup and methods are designed to release the disc with prescribed translational and rotational velocities. The impact event is captured by a high-speed digital camera system. Based on image processing, impact quantities, that is, coefficients of normal and tangential restitution, impulse ratio, rotational velocity change, incidence and rebound angles, are measured. A numerical model for interpreting the experimental data is developed, which can also give some insight into effects of strip flexibility. Results are also compared with those from finite element calculations.

[1]  R. D. Mindlin Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .

[2]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[3]  B. Wohlmuth,et al.  Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D , 2007 .

[4]  Barbara Wohlmuth,et al.  Mortar methods for contact problems , 2006 .

[5]  Barbara Wohlmuth,et al.  A new dual mortar method for curved interfaces: 2D elasticity , 2005 .

[6]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[7]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[8]  J. N. Fawcett,et al.  The Role of Elastic Tangential Compliance in Oblique Impact , 1981 .

[9]  Eric P. Kasper,et al.  A mixed-enhanced strain method , 2000 .

[10]  Barbara I. Wohlmuth,et al.  Efficient Algorithms for Problems with Friction , 2007, SIAM J. Sci. Comput..

[11]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[12]  M. Louge,et al.  Measurements of impact properties of small, nearly spherical particles , 1997 .

[13]  R. Davé,et al.  MEASUREMENTS OF COLLISIONAL PROPERTIES OF SPHERES USING HIGH-SPEED VIDEO ANALYSIS , 1997 .

[14]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[15]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[16]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[17]  Barbara Wohlmuth,et al.  A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems , 2005 .

[18]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[19]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[20]  Barbara I. Wohlmuth A V-cycle Multigrid Approach for Mortar Finite Elements , 2005, SIAM J. Numer. Anal..

[21]  Ahmet S. Yigit,et al.  EFFECT OF FLEXIBILITY ON LOW VELOCITY IMPACT RESPONSE , 1998 .

[22]  C. Brennen,et al.  Measurements of Solid Spheres Bouncing Off Flat Plates , 1990 .

[23]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[24]  Peter Wriggers,et al.  Analysis and Simulation of Contact Problems , 2006 .

[25]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[26]  Peter Eberhard,et al.  An Experimental and Numerical Study of Deformable Bodies Contact , 2006 .

[27]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[28]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[29]  Hertz On the Contact of Elastic Solids , 1882 .

[30]  Panayiotis Papadopoulos,et al.  An analysis of dual formulations for the finite element solution of two-body contact problems , 2005 .

[31]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[32]  Peter Eberhard,et al.  Elastoplastic phenomena in multibody impact dynamics , 2006 .

[33]  Peter Eberhard,et al.  Computational Dynamics of Multibody Systems: History, Formalisms, and Applications , 2006 .

[34]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[35]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[36]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[37]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[38]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[39]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[40]  Tod A. Laursen,et al.  Energy consistent algorithms for frictional contact problems , 1998 .

[41]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[42]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[43]  Michel Y. Louge,et al.  Measurements of the collision properties of small spheres , 1994 .

[44]  Peter Eberhard,et al.  Numerical and Experimental Investigation of Radial Impacts on a Half-Circular Plate , 2003 .

[45]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[46]  Hu Hai-chang,et al.  ON SOME VARIATIONAL PRINCIPLES IN THE THEORY OF ELASTICITY AND THE THEORY OF PLASTICITY , 1954 .

[47]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[48]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[49]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[50]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[51]  D. Kinderlehrer,et al.  Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .

[52]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[53]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[54]  Ahmad H. Kharaz,et al.  The measurement of particle rebound characteristics , 2000 .

[55]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[56]  Robert L. Taylor,et al.  A mixed-enhanced strain method: Part II: Geometrically nonlinear problems , 2000 .

[57]  Agba D. Salman,et al.  An experimental study of the elastic rebound of spheres , 2001 .

[58]  Werner Schiehlen,et al.  Multibody System Dynamics: Roots and Perspectives , 1997 .

[59]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[60]  Barbara I. Wohlmuth,et al.  Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation , 2006, Numerische Mathematik.

[61]  Mihail C. Roco,et al.  Particulate two-phase flow , 1993 .

[62]  Georg Stadler,et al.  Semismooth Newton and Augmented Lagrangian Methods for a Simplified Friction Problem , 2004, SIAM J. Optim..

[63]  B. I. WOHLMUTH,et al.  AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .

[64]  R. Krause,et al.  Monotone methods on non-matching grids for non-linear contact problems , 2003 .

[65]  J. Barbera,et al.  Contact mechanics , 1999 .

[66]  Kai Willner,et al.  Kontinuums- und Kontaktmechanik , 2003 .

[67]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[68]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[69]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[70]  M. M. Al-Mousawi,et al.  On Experimental Studies of Longitudinal and Flexural Wave Propagations: An Annotated Bibliography , 1986 .

[71]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[72]  J. N. Fawcett,et al.  The oblique impact of elastic spheres , 1976 .

[73]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[74]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[75]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .