Multilevel Numerical Algorithms and Experiments for Contact Dynamics
暂无分享,去创建一个
Peter Eberhard | Yu Jiang | Barbara Wohlmuth | S. Hüeber | P. Eberhard | B. Wohlmuth | S. Hüeber | Yu Jiang
[1] R. D. Mindlin. Elastic Spheres in Contact Under Varying Oblique Forces , 1953 .
[2] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[3] B. Wohlmuth,et al. Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D , 2007 .
[4] Barbara Wohlmuth,et al. Mortar methods for contact problems , 2006 .
[5] Barbara Wohlmuth,et al. A new dual mortar method for curved interfaces: 2D elasticity , 2005 .
[6] W. Goldsmith,et al. Impact: the theory and physical behaviour of colliding solids. , 1960 .
[7] Rolf Krause,et al. Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..
[8] J. N. Fawcett,et al. The Role of Elastic Tangential Compliance in Oblique Impact , 1981 .
[9] Eric P. Kasper,et al. A mixed-enhanced strain method , 2000 .
[10] Barbara I. Wohlmuth,et al. Efficient Algorithms for Problems with Friction , 2007, SIAM J. Sci. Comput..
[11] Barbara I. Wohlmuth,et al. A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..
[12] M. Louge,et al. Measurements of impact properties of small, nearly spherical particles , 1997 .
[13] R. Davé,et al. MEASUREMENTS OF COLLISIONAL PROPERTIES OF SPHERES USING HIGH-SPEED VIDEO ANALYSIS , 1997 .
[14] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[15] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[16] K. Johnson. Contact Mechanics: Frontmatter , 1985 .
[17] Barbara Wohlmuth,et al. A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems , 2005 .
[18] H. Rentz-Reichert,et al. UG – A flexible software toolbox for solving partial differential equations , 1997 .
[19] Barbara I. Wohlmuth,et al. An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..
[20] Barbara I. Wohlmuth. A V-cycle Multigrid Approach for Mortar Finite Elements , 2005, SIAM J. Numer. Anal..
[21] Ahmet S. Yigit,et al. EFFECT OF FLEXIBILITY ON LOW VELOCITY IMPACT RESPONSE , 1998 .
[22] C. Brennen,et al. Measurements of Solid Spheres Bouncing Off Flat Plates , 1990 .
[23] Patrice Coorevits,et al. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..
[24] Peter Wriggers,et al. Analysis and Simulation of Contact Problems , 2006 .
[25] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[26] Peter Eberhard,et al. An Experimental and Numerical Study of Deformable Bodies Contact , 2006 .
[27] Patrick Hild,et al. Quadratic finite element methods for unilateral contact problems , 2002 .
[28] Barbara I. Wohlmuth,et al. A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..
[29] Hertz. On the Contact of Elastic Solids , 1882 .
[30] Panayiotis Papadopoulos,et al. An analysis of dual formulations for the finite element solution of two-body contact problems , 2005 .
[31] Douglas N. Arnold,et al. Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..
[32] Peter Eberhard,et al. Elastoplastic phenomena in multibody impact dynamics , 2006 .
[33] Peter Eberhard,et al. Computational Dynamics of Multibody Systems: History, Formalisms, and Applications , 2006 .
[34] Barbara Wohlmuth,et al. A primal–dual active set strategy for non-linear multibody contact problems , 2005 .
[35] Faker Ben Belgacem,et al. Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..
[36] Ahmed A. Shabana,et al. Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .
[37] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[38] K. Washizu. Variational Methods in Elasticity and Plasticity , 1982 .
[39] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[40] Tod A. Laursen,et al. Energy consistent algorithms for frictional contact problems , 1998 .
[41] C. SimoJ.,et al. The discrete energy-momentum method , 1992 .
[42] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[43] Michel Y. Louge,et al. Measurements of the collision properties of small spheres , 1994 .
[44] Peter Eberhard,et al. Numerical and Experimental Investigation of Radial Impacts on a Half-Circular Plate , 2003 .
[45] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[46] Hu Hai-chang,et al. ON SOME VARIATIONAL PRINCIPLES IN THE THEORY OF ELASTICITY AND THE THEORY OF PLASTICITY , 1954 .
[47] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[48] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[49] P. Alart,et al. A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .
[50] P. W. Christensen,et al. Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .
[51] D. Kinderlehrer,et al. Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .
[52] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[53] Robert Mundt. Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .
[54] Ahmad H. Kharaz,et al. The measurement of particle rebound characteristics , 2000 .
[55] Faker Ben Belgacem,et al. Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..
[56] Robert L. Taylor,et al. A mixed-enhanced strain method: Part II: Geometrically nonlinear problems , 2000 .
[57] Agba D. Salman,et al. An experimental study of the elastic rebound of spheres , 2001 .
[58] Werner Schiehlen,et al. Multibody System Dynamics: Roots and Perspectives , 1997 .
[59] R. S. Falk. Error estimates for the approximation of a class of variational inequalities , 1974 .
[60] Barbara I. Wohlmuth,et al. Convergence in the incompressible limit of finite element approximations based on the Hu-Washizu formulation , 2006, Numerische Mathematik.
[61] Mihail C. Roco,et al. Particulate two-phase flow , 1993 .
[62] Georg Stadler,et al. Semismooth Newton and Augmented Lagrangian Methods for a Simplified Friction Problem , 2004, SIAM J. Optim..
[63] B. I. WOHLMUTH,et al. AN A POSTERIORI ERROR ESTIMATOR FOR THE LAMÉ EQUATION BASED ON H ( DIV )-CONFORMING STRESS APPROXIMATIONS , .
[64] R. Krause,et al. Monotone methods on non-matching grids for non-linear contact problems , 2003 .
[65] J. Barbera,et al. Contact mechanics , 1999 .
[66] Kai Willner,et al. Kontinuums- und Kontaktmechanik , 2003 .
[67] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[68] R. Glowinski. Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .
[69] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[70] M. M. Al-Mousawi,et al. On Experimental Studies of Longitudinal and Flexural Wave Propagations: An Annotated Bibliography , 1986 .
[71] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[72] J. N. Fawcett,et al. The oblique impact of elastic spheres , 1976 .
[73] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[74] Patrick Hild,et al. Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .
[75] Friedrich Pfeiffer,et al. Multibody Dynamics with Unilateral Contacts , 1996 .