Cooperative parameter identification of advection-diffusion processes using a mobile sensor network

Online parameter identification of advection-diffusion processes is performed using a mobile sensor network. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensor network so that the temporal variations of the field values can be estimated. Utilizing the state estimates from the constrained cooperative Kalman filter, a recursive least square (RLS) algorithm is designed to estimate the unknown parameters of the advection-diffusion process. We provide bias analysis of the RLS in the paper. In addition to validating the proposed algorithm in simulated advection-diffusion fields, we build a controllable CO2 advection-diffusion field in a lab and design a sensor grid that collects the field concentration over time to allow the validation of the proposed algorithm in the CO2 field. Experimental results demonstrate robustness of the algorithm under realistic uncertainties and disturbances.

[1]  Vijay Kumar,et al.  Cooperative air and ground surveillance , 2006, IEEE Robotics & Automation Magazine.

[2]  Bhaskar Krishnamachari,et al.  Distributed parameter estimation for monitoring diffusion phenomena using physical models , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[3]  D. Simon,et al.  Kalman filtering with state equality constraints , 2002 .

[4]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[5]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..

[6]  Ümit Özgüner,et al.  Motion planning for multitarget surveillance with mobile sensor agents , 2005, IEEE Transactions on Robotics.

[7]  Fumin Zhang,et al.  Cooperative filtering for parameter identification of diffusion processes , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[8]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[9]  Stergios I. Roumeliotis,et al.  Adaptive Sensing for Instantaneous Gas Release Parameter Estimation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  Wencen Wu,et al.  Online Passive Identifier for Spatially Distributed Systems Using Mobile Sensor Networks , 2017, IEEE Transactions on Control Systems Technology.

[11]  Lingzhong Guo,et al.  Estimation of spatial derivatives and identification of continuous spatio-temporal dynamical systems , 2006 .

[12]  Naomi Ehrich Leonard,et al.  Cooperative Filters and Control for Cooperative Exploration , 2010, IEEE Transactions on Automatic Control.

[13]  Michael A. Demetriou,et al.  Coupled Controls-Computational Fluids Approach for the Estimation of the Concentration From a Moving Gaseous Source in a 2-D Domain With a Lyapunov-Guided Sensing Aerial Vehicle , 2014, IEEE Transactions on Control Systems Technology.

[14]  Francesco Bullo,et al.  Optimal sensor placement and motion coordination for target tracking , 2006, Autom..

[15]  Stergios I. Roumeliotis,et al.  Performance analysis of multirobot Cooperative localization , 2006, IEEE Transactions on Robotics.

[16]  Chenkun Qi,et al.  Modeling of distributed parameter systems for applications—A synthesized review from time–space separation , 2010 .

[17]  Maciej Patan,et al.  Sensor network design for the estimation of spatially distributed processes , 2010, Int. J. Appl. Math. Comput. Sci..