Feedback versus motor programming in the control of aimed movements.

In the Fitts paradigm the subject moves a stylus to the left or right of an initial rest position to reach targets that vary in size and in distance from the initial position. The classic finding for relatively long movements is that movement time, measured from leaving the initial position until contact with the target, depends on both distance and target size according to a relationship known as "Fitts' law." By contrast, reaction time, measured from the signal to move until the stylus leaves the initial position, is independent of these parameters. While replicating these results for long movements, the present data show a different pattern for very short movements, for which Fitts' law no longer holds and for which reaction time increases as the size of the target is decreased. These findings were interpreted as implying that long movements are under feedback control, whereas short movements are predominately programmed and ballistic. This conclusion was supported by the additional finding that elimination of visual feedback was more disruptive to the long than to the short movements.