Evaluation of LBP Variants in Retinal Blood Vessels Segmentation Using Machine Learning

In this paper, the problem of retinal image segmentation is examined. The segmentation task is handled as a binary classification problem and it is solved by applying handcrafted texture features and traditional machine learning models. In this context, the paper studies the segmentation performance of the Local Binary Pattern (LBP) texture descriptor and nine of its variants. For the needs of the evaluation, a segmentation methodology and a corresponding experimental protocol is proposed, which are applied along with a benchmark retinal image dataset. The simulation results revealed that not all the LBP variants are appropriate for accurate extraction of the retinal arteries/veins morphology. The derived segmentation accuracy varies between 78%-91% (Support Vector Machine- SVM), S6%-92% (Decision Tree-DT), and 84%-92% (k-Nearest Neighbors - k-NN), with the Extended LBP (E-LBP) being the most informative descriptor.

[1]  Xiaonan Luo,et al.  Real-time background subtraction-based video surveillance of people by integrating local texture patterns , 2014, Signal Image Video Process..

[2]  Francesco Palmieri,et al.  Emerging Trends in Machine Learning for Signal Processing , 2017, Computational Intelligence and Neuroscience.

[3]  Heikki Kälviäinen,et al.  DIARETDB 0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms , 2007 .

[4]  Luc Van Gool,et al.  Deep Retinal Image Understanding , 2016, MICCAI.

[5]  Majid A. Al-Taee,et al.  Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis , 2018, Symmetry.

[6]  Mariano Rincón,et al.  Identification of the optic nerve head with genetic algorithms , 2008, Artif. Intell. Medicine.

[7]  Sven Loncaric,et al.  Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research , 2013, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA).

[8]  Enrico Grisan,et al.  A Novel Method for the Automatic Grading of Retinal Vessel Tortuosity , 2008, IEEE Transactions on Medical Imaging.

[9]  Matti Pietikäinen,et al.  A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification , 2001, ICAPR.

[10]  Fatimah Khalid,et al.  A texture descriptor: BackGround Local Binary Pattern (BGLBP) , 2015, Multimedia Tools and Applications.

[11]  Thierry Bouwmans,et al.  An eXtended Center-Symmetric Local Binary Pattern for Background Modeling and Subtraction in Videos , 2015, VISAPP.

[12]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[13]  Li Song,et al.  Dynamic background subtraction based on spatial extended center-symmetric local binary pattern , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[14]  Francisco Fumero,et al.  RIM-ONE: An open retinal image database for optic nerve evaluation , 2011, 2011 24th International Symposium on Computer-Based Medical Systems (CBMS).

[15]  Bunyarit Uyyanonvara,et al.  Blood vessel segmentation methodologies in retinal images - A survey , 2012, Comput. Methods Programs Biomed..

[16]  Manuel Graña,et al.  A proposal of Texture Features for interactive CTA Segmentation by Active Learning , 2014, InMed.

[17]  Karolina Nurzynska,et al.  Deep Learning as a Tool for Automatic Segmentation of Corneal Endothelium Images , 2018, Symmetry.

[18]  Matti Pietikäinen,et al.  Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Manuel G. Penedo,et al.  Improvements in retinal vessel clustering techniques: towards the automatic computation of the arterio venous ratio , 2010, Computing.

[20]  Meng Wu,et al.  Hybrid center-symmetric local pattern for dynamic background subtraction , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[21]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[22]  Max A. Viergever,et al.  Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.

[23]  Laude,et al.  FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE , 2014 .

[24]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[25]  Marcin Ciecholewski,et al.  Malignant and Benign Mass Segmentation in Mammograms Using Active Contour Methods , 2017, Symmetry.

[26]  L Mdakane,et al.  Extended local binary pattern features for improving settlement type classification of quickbird images , 2012 .

[27]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[28]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[29]  C. Schmid,et al.  Description of Interest Regions with Center-Symmetric Local Binary Patterns , 2006, ICVGIP.

[30]  Ramakrishnan Mukundan,et al.  Local Tchebichef Moments for Texture Analysis , 2014 .

[31]  Dimitris E. Koulouriotis,et al.  Moment-based local binary patterns: A novel descriptor for invariant pattern recognition applications , 2013, Neurocomputing.

[32]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  George Azzopardi,et al.  Trainable COSFIRE filters for vessel delineation with application to retinal images , 2015, Medical Image Anal..

[34]  Manuel Graña,et al.  A lattice computing approach to Alzheimer's disease computer assisted diagnosis based on MRI data , 2015, Neurocomputing.

[35]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.